Mathematics Dictionary
Dr. K. G. Shih
Area of triangle
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Diagram and question
Q02 |
- Area of triangle and sine law
Q03 |
- Area EFT = (R^2)*sin(A)*sin(B)*sin(C)/2
Q04 |
- Join mid points of triangle and form 4 congruent triangle
Q01. Diagram and question
Diagram : Triangle ABC divide into 4 triangles
Draw a triangle ABC and sides are a,b,c
Let E be mid point on AC and CE = AE = b/2
Let T be mid point on BA and BT = TA = c/2
Let F be mid point of BC and BF = CF = a/2
Join ET, TF and FE so that make four triangles
Question
1. Prove that area of triangle EFT = (area of triangle ABC)/4
2. Prove that area FEC = area EAT = area TBF = area EFT
3. Area of triangle EFT = (R^2)*sin(A)*sin(B)*sin(C)/2
4. Join mid points of triangle and form 4 congruent triangle
Go to Begin
Q02. Area of triangle and sine law
Sine law
a = 2*R*sin(A)
b = 2*R*sin(B)
c = 2*R*sin(C)
Area of triangle
= b*c*sin(A)/2
= c*a*sin(B)/2
= a*b*sin(B)/2
Area of triangle
= b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
= c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
= a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
Area of triangle
= a*b*c/(4*R) = 2*(R^2)*sin(A)*sin(B)*sin(C)
Go to Begin
Q03. Area EFT = a*b*c/(16*R) = (R^2)*sin(A)*sin(B)*sin(C)/2
Find area FEC, EAT and TBF
Area FEC
Area = (b/2)*(a/2)*sin(C)/2
Area = a*b*sin(C)/8
Area = (R^2)*sin(A)*sin(B)*sin(C)/2
Area = a*b*c/(16*R)
Area EAT
Area = (b/2)*(c/2)*sin(A)/2
Area = b*c*sin(A)/8
Area = (R^2)*sin(A)*sin(B)*sin(C)/2
Area = a*b*c/(16*R)
Area TBF
Area = (c/2)*(a/2)*sin(B)/2
Area = c*a*sin(B)/8
Area = (R^2)*sin(A)*sin(B)*sin(C)/2
Area = a*b*c/(16*R)
Find Area EFT
Area = area ABC - (area FEC + area EAT + area TBF)
Area = (2 - 3/2)*(R^2)*sin(A)*sin(B)*sin(C)
Area = (R^2)*sin(A)*sin(B)*sin(C)/2
Find Area EFT = (area ABC)/4
Since Area FEC = area EAT = area TBF = area EFT
Since Area ABC = Area FEC + area EAT + area TBF + area EFT
Hence are EFT = (area ABC)/4
Find Area EFT = (area ABC)/4
Area ABC = a*b*c/(4*R)
Area EFT = (R^2)*sin(A)*sin(B)*sin(C)/2
= (R^2)*(a/(2*R))*(b/(2*R))*(c/(2*R))/2
= a*b*c/(16*R)
= (Area ABC)/4
Go to Begin
Q4. Prove area EFT = (Area ABC)/4 geometrically
Proof
Since T and E are mid points
Hence TE = BC/2 and TE parallel to BC
Hence angle EBT = angle ETA
BT = TA and TE = BF
Hence triangle EBT is congruent to triangle ETA (SAS)
Similarly triangle ETA is congruent to trangle EFC
Triangle EFT is congruent to triangle BFT (SAS)
EF = BT
TE = BF
Since BFET is parallelogram
Hence angle FBT = angle FET
Hence area EFT = (area ABC)/4
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.