Counter
Mathematics Dictionary
Dr. K. G. Shih

Area of triangle


  • Q01 | - Diagram and question
  • Q02 | - Area of triangle and sine law
  • Q03 | - Area EFT = (R^2)*sin(A)*sin(B)*sin(C)/2
  • Q04 | - Join mid points of triangle and form 4 congruent triangle

  • Q01. Diagram and question



    Diagram : Triangle ABC divide into 4 triangles
    • Draw a triangle ABC and sides are a,b,c
    • Let E be mid point on AC and CE = AE = b/2
    • Let T be mid point on BA and BT = TA = c/2
    • Let F be mid point of BC and BF = CF = a/2
    • Join ET, TF and FE so that make four triangles
    Question
    • 1. Prove that area of triangle EFT = (area of triangle ABC)/4
    • 2. Prove that area FEC = area EAT = area TBF = area EFT
    • 3. Area of triangle EFT = (R^2)*sin(A)*sin(B)*sin(C)/2
    • 4. Join mid points of triangle and form 4 congruent triangle

    Go to Begin

    Q02. Area of triangle and sine law

    Sine law
    • a = 2*R*sin(A)
    • b = 2*R*sin(B)
    • c = 2*R*sin(C)
    Area of triangle
    • = b*c*sin(A)/2
    • = c*a*sin(B)/2
    • = a*b*sin(B)/2
    Area of triangle
    • = b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
    • = c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
    • = a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
    Area of triangle
    • = a*b*c/(4*R) = 2*(R^2)*sin(A)*sin(B)*sin(C)

    Go to Begin

    Q03. Area EFT = a*b*c/(16*R) = (R^2)*sin(A)*sin(B)*sin(C)/2

    Find area FEC, EAT and TBF
    • Area FEC
      • Area = (b/2)*(a/2)*sin(C)/2
      • Area = a*b*sin(C)/8
      • Area = (R^2)*sin(A)*sin(B)*sin(C)/2
      • Area = a*b*c/(16*R)
    • Area EAT
      • Area = (b/2)*(c/2)*sin(A)/2
      • Area = b*c*sin(A)/8
      • Area = (R^2)*sin(A)*sin(B)*sin(C)/2
      • Area = a*b*c/(16*R)
    • Area TBF
      • Area = (c/2)*(a/2)*sin(B)/2
      • Area = c*a*sin(B)/8
      • Area = (R^2)*sin(A)*sin(B)*sin(C)/2
      • Area = a*b*c/(16*R)
    Find Area EFT
    • Area = area ABC - (area FEC + area EAT + area TBF)
    • Area = (2 - 3/2)*(R^2)*sin(A)*sin(B)*sin(C)
    • Area = (R^2)*sin(A)*sin(B)*sin(C)/2
    Find Area EFT = (area ABC)/4
    • Since Area FEC = area EAT = area TBF = area EFT
    • Since Area ABC = Area FEC + area EAT + area TBF + area EFT
    • Hence are EFT = (area ABC)/4
    Find Area EFT = (area ABC)/4
    • Area ABC = a*b*c/(4*R)
    • Area EFT = (R^2)*sin(A)*sin(B)*sin(C)/2
    • = (R^2)*(a/(2*R))*(b/(2*R))*(c/(2*R))/2
    • = a*b*c/(16*R)
    • = (Area ABC)/4

    Go to Begin

    Q4. Prove area EFT = (Area ABC)/4 geometrically

    Proof
    • Since T and E are mid points
    • Hence TE = BC/2 and TE parallel to BC
    • Hence angle EBT = angle ETA
    • BT = TA and TE = BF
    • Hence triangle EBT is congruent to triangle ETA (SAS)
    • Similarly triangle ETA is congruent to trangle EFC
    • Triangle EFT is congruent to triangle BFT (SAS)
      • EF = BT
      • TE = BF
      • Since BFET is parallelogram
      • Hence angle FBT = angle FET
    • Hence area EFT = (area ABC)/4

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1