Mathematics Dictionary
Dr. K. G. Shih
Area of triangle
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Diagram and question
Q02 |
- Area of triangle and sine law
Q03 |
- Area EFT = 2*(R^2)*sin(A)*sin(B)*sin(C)/3
Q04 |
- Area EFT = (area ABC)/3
Q01. Diagram and question
Diagram : Triangle ABC divide into 4 triangles
Draw a triangle ABC and sides are a,b,c
Let E be a point on AC and CE = b/3 and AE = (2*b)/3
Let T be a point on BA and TA = c/3 and BT = (2*c)/3
Let F be a point of BC and BF = a/3 and CF = (2*a)/3
Join ET, TF and FE so that make four triangles
Question
1. Prove that area of triangle EFT = (area of triangle ABC)/3
2. Prove that area FEC = area EAT = area TBF
3. Area of triangle EFT = 2*(R^2)*sin(A)*sin(B)*sin(C)/3
Go to Begin
Q02. Area of triangle and sine law
Sine law
a = 2*R*sin(A)
b = 2*R*sin(B)
c = 2*R*sin(C)
Area of triangle
= b*c*sin(A)/2
= c*a*sin(B)/2
= a*b*sin(B)/2
Area of triangle
= b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
= c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
= a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
Area of triangle
Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)
Go to Begin
Q03. Area EFT = 2*(R^2)*sin(A)*sin(B)*sin(C)/3
Proof
Area FEC
Area = CE*CF*sin(C)/2
Area = (b/3)*(2*a/3)*sin(C)/2
Area = a*b*sin(C)/9
Area = (4*R^2)*sin(A)*sin(B)*sin(C)/9
Area = (2*area ABC)/9
Area EAT
Area = AE*AT*sin(A)
Area = (b/3)*(2*c/3)*sin(A)/2
Area = b*c*sin(A)/9
Area = (4*R^2)*sin(A)*sin(B)*sin(C)/9
Area = (2*area ABC)/9
Area TBF
Area = BT*BE*sin(B)/2
Area = (c/3)*(2*a/3)*sin(B)/2
Area = c*a*sin(B)/9
Area = (4*R^2)*sin(A)*sin(B)*sin(C)/9
Area = (2*area ABC)/9
Find Area EFT in trig function
Area = area ABC - area FEC - area EAT - area TBF
Area = (2 - 3*4/9)*(R^2)*sin(A)*sin(B)*sin(C)
Area = 2*(R^2)*sin(A)*sin(B)*sin(C)/3
Find area EFT in terms of area ABC
Area = (1 - 3*(2*(area ABC))/9)
Area = (1 - 2/3)*(area ABC)
Area = (area ABC)/3
Go to Begin
Q04. Area EFT = (area ABC)/3
Find area EFT in terms of area ABC
Area = (1 - 3*(2*(area ABC))/9)
Area = (1 - 2/3)*(area ABC)
Area = (area ABC)/3
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.