Mathematics Dictionary
Dr. K. G. Shih
Area of triangle
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Diagram and question
Q02 |
- Area of triangle and sine law
Q03 |
- Area EFT = 7*(R^2)*sin(A)*sin(B)*sin(C)/8
Q04 |
- Area EFT = 7*(area ABC)/16
Q01. Diagram and question
Diagram : Triangle ABC divide into 4 triangles
Draw a triangle ABC and sides are a,b,c
Let E be a point on AC and CE = b/4
Let T be a point on BA and AT = c/4
Let F be a point of BC and BF = a/4
Join ET, TF and FE so that make four triangles
Question
1. Prove that area of triangle EFT = 7*(area of triangle ABC)/16
2. Prove that area FEC = area EAT = area TBF
3. Area of triangle EFT = 7*(R^2)*sin(A)*sin(B)*sin(C)/8
Go to Begin
Q02. Area of triangle and sine law
Sine law
a = 2*R*sin(A)
b = 2*R*sin(B)
c = 2*R*sin(C)
Area of triangle
= b*c*sin(A)/2
= c*a*sin(B)/2
= a*b*sin(B)/2
Area of triangle
= b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
= c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
= a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
Area of triangle
Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)
Go to Begin
Q03. Area EFT =7*(R^2)*sin(A)*sin(B)*sin(C)/8
Proof
Area FEC
Area = CE*CF*sin(C)/2
Area = (b/4)*(3*a/4)*sin(C)/2
Area = 3*a*b*sin(C)/32
Area = (12*R^2)*sin(A)*sin(B)*sin(C)/32
Area = 3*(R^2)*sin(A)*sin(B)*sin(C)/8
Area EAT
Area = AE*AT*sin(A)
Area = (b/4)*(3*c/4)*sin(A)/2
Area = 3*b*c*sin(A)/32
Area = (12*R^2)*sin(A)*sin(B)*sin(C)/32
Area = 3*(R^2)*sin(A)*sin(B)*sin(C)/8
Area TBF
Area = BT*BE*sin(B)/2
Area = (c/4)*(3*a/4)*sin(B)/2
Area = 3*c*a*sin(B)/32
Area = (12*R^2)*sin(A)*sin(B)*sin(C)/32
Area = 3*(R^2)*sin(A)*sin(B)*sin(C)/8
Find Area EFT in trig function
Area = area ABC - (area FEC + area EAT + area TBF)
Area = (2 - 3*3/8)*(R^2)*sin(A)*sin(B)*sin(C)
Area = 7*(R^2)*sin(A)*sin(B)*sin(C)/8
Area = 7*(area ABC)/16
Go to Begin
Q04. Area EFT = 7*(area ABC)/16
Find area EFT in terms of area ABC
Area = (1 - 3*(3*(area ABC))/16)
Area = (1 - 9/16)*(area ABC)
Area = 7*(area ABC)/16
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.