Counter
Mathematics Dictionary
Dr. K. G. Shih

Area of triangle


  • Q01 | - Diagram and question
  • Q02 | - Area of triangle and sine law
  • Q03 | - Area EFT = (area ABC)*(1 - 3*(n-1)/(n^2))
  • Q04 | - Verify for n = 2, 3, 4 and 5

  • Q01. Diagram and question


    Diagram : Triangle ABC divide into 4 triangles
    • Draw a triangle ABC and sides are a,b,c
    • Let E be a point on AC and CE = b/n
    • Let T be a point on BA and TA = c/n
    • Let F be a point of BC and BF = a/n
    • Join ET, TF and FE so that make four triangles
    Question
    • 1. Prove that area of triangle EFT = (area ABC)*(1 - 3*(n-1))/(n^2)
    • 2. Prove that area FEC = area EAT = area TBF

    Go to Begin

    Q02. Area of triangle and sine law

    Sine law
    • a = 2*R*sin(A)
    • b = 2*R*sin(B)
    • c = 2*R*sin(C)
    Area of triangle
    • = b*c*sin(A)/2
    • = c*a*sin(B)/2
    • = a*b*sin(B)/2
    Area of triangle
    • = b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
    • = c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
    • = a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
    Area of triangle
    • Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)

    Go to Begin

    Q03. Area EFT = (area ABC)*(1 - 3*(n-1)/(n^2))

    Question
    • Find the area of triangle ETF = (are ABC)*(1 - 3*(n-1)/(n^2))
    Solution : Use area of triangle = b*c*sin(A)/2
    • Area of triangle CEF
      • Area = (FC*CE)*sin(C)/2
      • Area = (a/n)*((n-1)*b/n)*sin(C)/2
      • Area = ((n-1)/(n^2))*a*b*sin(C)/2
      • Area = ((n-1)/(n^2))*(area of triangle ABC)
    • Area of triangle AET
      • Area = (AE*AT)*sin(A)/2
      • Area = (b/n)*((n-1)*c/n)*sin(A)/2
      • Area = ((n-1)/(n^2))*b*c*sin(A)/2
      • Area = ((n-1)/(n^2))*(area of triangle ABC)
    • Area of triangle BFT
      • Area = (BT*BF)*sin(B)/2
      • Area = (c/n)*((n-1)*a/n)*sin(B)/2
      • Area = ((n-1)/(n^2))*b*c*sin(B)/2
      • Area = ((n-1)/(n^2))*(area of triangle ABC)
    • Hence area EFT
      • Area = ABC - CEF - AET - BFT
      • Area = (area ABC)*(1 - 3*(n-1)/(n^2))
      • Area = (area ABC)*((n^2 - 3*n + 3)/(n^2)) and n > 1

    Go to Begin

    Q04. Verify

    Exercies : Use above results to find
    • Area EFT = (1/4)*(Area ABC) if n = 2
    • Area EFT = (3/9)*(Area ABC) if n = 3
    • Area EFT = (07/16)*(Area ABC) if n = 4
    • Area EFT = (13/25)*(Area ABC) if n = 5
    Find area EFT in terms of area ABC
    • Area = (1 - 3*(3*(area ABC))/16)
    • Area = (1 - 9/16)*(area ABC)
    • Area = 7*(area ABC)/16

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1