Counter
Mathematics Dictionary
Dr. K. G. Shih

Area of triangle


  • Q01 | - Diagram and question
  • Q02 | - Area of triangle and sine law
  • Q03 | - Area EFT = 7*(area ABC)/24

  • Q01. Diagram and question


    Diagram : Triangle ABC divide into 4 triangles
    • Draw a triangle ABC and sides are a,b,c
    • Let E be a point on AC and AE = b/3
    • Let T be a point on BA and BT = c/4
    • Let F be a point on BC and CF = a/2
    • Join ET, TF and FE so that make four triangles
    Question
    • Prove that area of triangle EFT = 7*(area of triangle ABC)/24

    Go to Begin

    Q02. Area of triangle and sine law

    Sine law
    • a = 2*R*sin(A)
    • b = 2*R*sin(B)
    • c = 2*R*sin(C)
    Area of triangle
    • = b*c*sin(A)/2
    • = c*a*sin(B)/2
    • = a*b*sin(B)/2
    Area of triangle
    • = b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
    • = c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
    • = a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
    Area of triangle
    • Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)

    Go to Begin

    Q03. Area EFT = 7*(area ABC)/24

    Construction
    • Draw a triangle ABC and sides are a,b,c
    • Let E be a point on AC and EA = b/3
    • Let T be a point on BA and BT = c/4
    • Let F be a point on BC and FB = a/2
    • Join ET, TF and FE so that make four triangles
    Question
    • Find the area of triangle ETF = ?
    Solution : Use area of triangle = b*c*sin(A)/2
    • Area of triangle CEF
      • Area = (FC*CE)*sin(C)/2
      • Area = (a/2)*(2*b/3)*sin(C)/2
      • Area = (1/3)*a*b*sin(C)/2
      • Area = (Area ABC)/3
  • Area of triangle AET
    • Area = (AE*AT)*sin(A)/2
    • Area = (b/3)*(3*c/4)*sin(A)/2
    • Area = (1/4)*b*c*sin(A)/2
    • Area = (Area ABC)/4
  • Area of triangle BFT
    • Area = (BT*BF)*sin(B)/2
    • Area = (c/4)*(a/2)*sin(B)/2
    • Area = (1/8)*b*c*sin(B)/2
    • Area = (Area ABC)/8
  • Hence area EFT
    • Area = ABC - CEF - AET - BFT
    • Area = (area ABC)*(1 - 1/3 - 1/4 - 1/8)
    • Area = (area ABC)*(7/24)

    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1