Mathematics Dictionary
Dr. K. G. Shih
Area of triangle
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Diagram and question
Q02 |
- Area of triangle and sine law
Q03 |
- Area EFT = 7*(area ABC)/24
Q01. Diagram and question
Diagram : Triangle ABC divide into 4 triangles
Draw a triangle ABC and sides are a,b,c
Let E be a point on AC and AE = b/3
Let T be a point on BA and BT = c/4
Let F be a point on BC and CF = a/2
Join ET, TF and FE so that make four triangles
Question
Prove that area of triangle EFT = 7*(area of triangle ABC)/24
Go to Begin
Q02. Area of triangle and sine law
Sine law
a = 2*R*sin(A)
b = 2*R*sin(B)
c = 2*R*sin(C)
Area of triangle
= b*c*sin(A)/2
= c*a*sin(B)/2
= a*b*sin(B)/2
Area of triangle
= b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
= c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
= a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
Area of triangle
Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)
Go to Begin
Q03. Area EFT = 7*(area ABC)/24
Construction
Draw a triangle ABC and sides are a,b,c
Let E be a point on AC and EA = b/3
Let T be a point on BA and BT = c/4
Let F be a point on BC and FB = a/2
Join ET, TF and FE so that make four triangles
Question
Find the area of triangle ETF = ?
Solution : Use area of triangle = b*c*sin(A)/2
Area of triangle CEF
Area = (FC*CE)*sin(C)/2
Area = (a/2)*(2*b/3)*sin(C)/2
Area = (1/3)*a*b*sin(C)/2
Area = (Area ABC)/3
Area of triangle AET
Area = (AE*AT)*sin(A)/2
Area = (b/3)*(3*c/4)*sin(A)/2
Area = (1/4)*b*c*sin(A)/2
Area = (Area ABC)/4
Area of triangle BFT
Area = (BT*BF)*sin(B)/2
Area = (c/4)*(a/2)*sin(B)/2
Area = (1/8)*b*c*sin(B)/2
Area = (Area ABC)/8
Hence area EFT
Area = ABC - CEF - AET - BFT
Area = (area ABC)*(1 - 1/3 - 1/4 - 1/8)
Area = (area ABC)*(7/24)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.