Mathematics Dictionary
Dr. K. G. Shih
Area of triangle
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Diagram and question
Q02 |
- Area of triangle and sine law
Q03 |
- Find ration AT : BT if (area BTF)^2 = (area CEF)*(area AET)
Q04 |
- Find area EFT
Q01. Diagram and question
Diagram : Triangle ABC divide into 4 triangles
Draw a triangle ABC and sides are a,b,c
Let E be a point on AC and EA = b/3
Let T be a point on BA and BT = c/4
Let F be a point on BC and FB = a/2
Join ET, TF and FE so that make four triangles
Question
Prove that area of triangle EFT = 7*(area of triangle ABC)/24
Go to Begin
Q02. Area of triangle and sine law
Sine law
a = 2*R*sin(A)
b = 2*R*sin(B)
c = 2*R*sin(C)
Area of triangle
= b*c*sin(A)/2
= c*a*sin(B)/2
= a*b*sin(B)/2
Area of triangle
= b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
= c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
= a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
Area of triangle
Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)
Go to Begin
Q03. Find BT : TA if (area BTF)^2 = (area CEF)*(area AET)
Other condition
Let E be a point on AC and CE = 2*b/3
Let F be a mid point of CB and BF = a/2
Construction
Draw a triangle ABC and sides are a,b,c
a = BC
b = CA
c = AB
Let E be a point on AC and CE = 2*b/3
Let F be a mid point of CB and BF = a/2
Let T be a point on BA
Join ET, TF and FE so that triangle make four triangles
Let area of triangle BTF = x
Let area of triangle EFC = y
Let area of triangle ATE = z
Question
1. If x^2 = y*z, find the ratio BT : TA
2. Find the area of triangle ETF
Solution
Area of triangle BTF = x
x = BT*BF*sin(B)/2
Since BF = a/2, hence x = BT*a*sin(B)/4
Area of triangle EFC = y
y = FC*CE*sin(B)/2
Since FC = a/2 and CE = 2*b/3, hence y = a*b*sin(C)/6
Area of triangle ATE = z
z = AT*AE*sin(A)/2
Since AE = b/3, hence z = AT*b*sin(A)/6
Find y*z
y*z = (a*b*sin(C)/6)*(AT*b*sin(A)/6)
y*z = AT*a*(b^2)*sin(A)*sin(C)/36
y*z = AT*a*b*(2*R*sin(B))*sin(A)*sin(C)/36
y*z = AT*a*b*R*sin(A)*sin(B)*sin(C)/18
Find x^2
x^2 = (BT*a*sin(B)/4)^2
x^2 = (BT^2)*(a^2)*(sin(B)^2)/16
Find x^2 = y*z
(BT^2)*(a^2)*(sin(B)^2)/16 = AT*a*b*R*sin(A)*sin(B)*sin(C)/18
Let BT = u and AT = v
(u^2)*a*sin(B)/16 = v*b*R*sin(A)*sin(C)/18
Since a = 2*R*sin(A), b = 2*R*sin(B) and c = 2*R*sin(C)
(u^2)*2*R*sin(A)*sin(B)/16 = v*b*R*sin(A)*sin(C)/18
(u^2)*sin(B)/8 = v*b*sin(C)/18
(u^2)*sin(B)/8 = v*2*R*sin(B)*sin(C)/18
(u^2)/8 = v*R*sin(C)/9 = v*c/18
Hence u^2 = 4*v*c/9
Solve
u^2 = 4*v*c/9 ............ (1)
u + v = c ................ (2)
Find u and v
(c - v)^2 = 4*v*c/9
v^2 - 2*v*c + c^2 = 4*v*c/9
v^2 - 22*v*c/9 + c^2 = 0
Hence v = ((22c/9) + Sqr((22/9)2 - 4*1*1)*c)/2
v/c = (2.4444 + Sqr(1.9753086))/2 or v/c = (2.4444 - Sqr(1.9753086))/2
v/c = (2.4444 + 1.4054567)/2
v = 1.924948*c (v should be less than c)
Hence v/c = (2.44444 - 1.4054567)/2
v = 0.519492*c
u = 0.480508*c
Hence BT : TA = u : v = 0.480508 : 0.519492
Verify
Find y*z = AT*a*b*R*sin(A)*sin(B)*sin(C)/18
= 0.519492*c*a*b*R*sin(A)*sin(B)*sin(C)/18
= 0.519492*(8*R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)/18
= 0.519492*4*(R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)/9
= 0.23089*(R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)
Find x^2 = ((c^2)*0.480508^2)*(a^2)*(sin(B)^2)/16
= (0.480508^2)*(4*R^2)*(sin(C)^2)*(4*R^2)*(sin(A)^2)*(sin(B)B^2)/16
= (0.480508^2)*(R^4)*(sin(A)^2)*(sin(B)B^2)*(sin(C)^2)
= 0.23089*(R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)
Go to Begin
Q04. Find area EFT
Find area of triangle EFT
z = AT*b*sin(A)/6
z = (0.519492)*4*(R^2)*sin(A)*sin(B)*sin(C)/6
z = 0.346328(R^2)*sin(A)*sin(B)*sin(C)
y = a*b*sin(C)/6
y = 4*(R^2)*sin(A)*sin(B)*sin(C)/6
y = 0.666666*(R^2)*sin(A)*sin(B)*sin(C)
Area of ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)
Area of EFT = Area ABC - x - y - z
= (2 - 0.480508 - 0.666666 - 0.346328)*(R^2)*sin(A)*sin(B)*sin(C)
= (0.506498)*(R^2)*sin(A)*sin(B)*sin(C)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.