Counter
Mathematics Dictionary
Dr. K. G. Shih

Area of triangle


  • Q01 | - Diagram and question
  • Q02 | - Area of triangle and sine law
  • Q03 | - Find ration AT : BT if (area BTF)^2 = (area CEF)*(area AET)
  • Q04 | - Find area EFT

  • Q01. Diagram and question


    Diagram : Triangle ABC divide into 4 triangles
    • Draw a triangle ABC and sides are a,b,c
    • Let E be a point on AC and EA = b/3
    • Let T be a point on BA and BT = c/4
    • Let F be a point on BC and FB = a/2
    • Join ET, TF and FE so that make four triangles
    Question
    • Prove that area of triangle EFT = 7*(area of triangle ABC)/24

    Go to Begin

    Q02. Area of triangle and sine law

    Sine law
    • a = 2*R*sin(A)
    • b = 2*R*sin(B)
    • c = 2*R*sin(C)
    Area of triangle
    • = b*c*sin(A)/2
    • = c*a*sin(B)/2
    • = a*b*sin(B)/2
    Area of triangle
    • = b*c*sin(A)/2 = b*c*(a/(2*R))/2 = a*b*c/(4*R)
    • = c*a*sin(B)/2 = c*a*(b/(2*R))/2 = a*b*c/(4*R)
    • = a*b*sin(B)/2 = a*b*(c/(2*R))/2 = a*b*c/(4*R)
    Area of triangle
    • Hence area ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)

    Go to Begin

    Q03. Find BT : TA if (area BTF)^2 = (area CEF)*(area AET)

    Other condition
    • Let E be a point on AC and CE = 2*b/3
    • Let F be a mid point of CB and BF = a/2
    Construction
    • Draw a triangle ABC and sides are a,b,c
      • a = BC
      • b = CA
      • c = AB
    • Let E be a point on AC and CE = 2*b/3
    • Let F be a mid point of CB and BF = a/2
    • Let T be a point on BA
    • Join ET, TF and FE so that triangle make four triangles
    • Let area of triangle BTF = x
    • Let area of triangle EFC = y
    • Let area of triangle ATE = z
    Question
    • 1. If x^2 = y*z, find the ratio BT : TA
    • 2. Find the area of triangle ETF
    Solution
    • Area of triangle BTF = x
      • x = BT*BF*sin(B)/2
      • Since BF = a/2, hence x = BT*a*sin(B)/4
    • Area of triangle EFC = y
      • y = FC*CE*sin(B)/2
      • Since FC = a/2 and CE = 2*b/3, hence y = a*b*sin(C)/6
    • Area of triangle ATE = z
      • z = AT*AE*sin(A)/2
      • Since AE = b/3, hence z = AT*b*sin(A)/6
    • Find y*z
      • y*z = (a*b*sin(C)/6)*(AT*b*sin(A)/6)
      • y*z = AT*a*(b^2)*sin(A)*sin(C)/36
      • y*z = AT*a*b*(2*R*sin(B))*sin(A)*sin(C)/36
      • y*z = AT*a*b*R*sin(A)*sin(B)*sin(C)/18
    • Find x^2
      • x^2 = (BT*a*sin(B)/4)^2
      • x^2 = (BT^2)*(a^2)*(sin(B)^2)/16
    • Find x^2 = y*z
      • (BT^2)*(a^2)*(sin(B)^2)/16 = AT*a*b*R*sin(A)*sin(B)*sin(C)/18
      • Let BT = u and AT = v
      • (u^2)*a*sin(B)/16 = v*b*R*sin(A)*sin(C)/18
      • Since a = 2*R*sin(A), b = 2*R*sin(B) and c = 2*R*sin(C)
      • (u^2)*2*R*sin(A)*sin(B)/16 = v*b*R*sin(A)*sin(C)/18
      • (u^2)*sin(B)/8 = v*b*sin(C)/18
      • (u^2)*sin(B)/8 = v*2*R*sin(B)*sin(C)/18
      • (u^2)/8 = v*R*sin(C)/9 = v*c/18
      • Hence u^2 = 4*v*c/9
    • Solve
      • u^2 = 4*v*c/9 ............ (1)
      • u + v = c ................ (2)
    • Find u and v
      • (c - v)^2 = 4*v*c/9
      • v^2 - 2*v*c + c^2 = 4*v*c/9
      • v^2 - 22*v*c/9 + c^2 = 0
      • Hence v = ((22c/9) + Sqr((22/9)2 - 4*1*1)*c)/2
      • v/c = (2.4444 + Sqr(1.9753086))/2 or v/c = (2.4444 - Sqr(1.9753086))/2
      • v/c = (2.4444 + 1.4054567)/2
      • v = 1.924948*c (v should be less than c)
      • Hence v/c = (2.44444 - 1.4054567)/2
      • v = 0.519492*c
      • u = 0.480508*c
    • Hence BT : TA = u : v = 0.480508 : 0.519492
    Verify
    • Find y*z = AT*a*b*R*sin(A)*sin(B)*sin(C)/18
      • = 0.519492*c*a*b*R*sin(A)*sin(B)*sin(C)/18
      • = 0.519492*(8*R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)/18
      • = 0.519492*4*(R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)/9
      • = 0.23089*(R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)
    • Find x^2 = ((c^2)*0.480508^2)*(a^2)*(sin(B)^2)/16
      • = (0.480508^2)*(4*R^2)*(sin(C)^2)*(4*R^2)*(sin(A)^2)*(sin(B)B^2)/16
      • = (0.480508^2)*(R^4)*(sin(A)^2)*(sin(B)B^2)*(sin(C)^2)
      • = 0.23089*(R^4)*(sin(A)^2)*(sin(B)^2)*(sin(C)^2)

    Go to Begin

    Q04. Find area EFT

    Find area of triangle EFT
    • z = AT*b*sin(A)/6
      • z = (0.519492)*4*(R^2)*sin(A)*sin(B)*sin(C)/6
      • z = 0.346328(R^2)*sin(A)*sin(B)*sin(C)
    • y = a*b*sin(C)/6
      • y = 4*(R^2)*sin(A)*sin(B)*sin(C)/6
      • y = 0.666666*(R^2)*sin(A)*sin(B)*sin(C)
    • Area of ABC = 2*(R^2)*sin(A)*sin(B)*sin(C)
    • Area of EFT = Area ABC - x - y - z
      • = (2 - 0.480508 - 0.666666 - 0.346328)*(R^2)*sin(A)*sin(B)*sin(C)
      • = (0.506498)*(R^2)*sin(A)*sin(B)*sin(C)

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1