Mathematics Dictionary
Dr. K. G. Shih
Question and Answer
Questions
Symbol Defintion
Sqr(x) = Square root of x
Q01 |
- Equation theory : quartic equation
Q02 |
-
Q03 |
-
Q04 |
-
Q05 |
-
Q06 |
-
Q07 |
-
Q08 |
-
Q09 |
-
Q10 |
-
Q11 |
- Quiz
Q12 |
- Quiz answer
Q13 |
- Reference
Answers
Q01. Equation theory : Quartic equation
Question
Equation : x^4 + b*x^3 + c*x^2 + d*x + e = 0
Roots are 1, 2, 3, 4. Find d
Keywords
Let roots be p,q,r,s
1. Coefficients of x is p*q*r + p*q*s + p*r*s + q*r*s = -d/a
2. Coefficients of x is (1/p + 1/q + 1/r + 1/s) = -d/e
Method 1 : Use formula 2
1/1 + 1/2 + 1/3 +1/4 = -d/e and e = p*q*r*s = 1*2*3*4 = 24
Hence d = -24*(1 + 1/2 + 1/3 + 1/4) = -(24 + 12 + 8 + 6) = -50
Mehtod 2 : Use formula 2 with a = 1
d/a = -(1*2*3 + 1*2*4 + 1*3*4 + 2*3*4) = -(6 + 8 + 12 + 24) = -50
Method 3 : x^4 + b*x^3 + c*x^2 + d*x + e = (x-1)*(x-2)*(x-3)*(x-4)
(x-1)*(x-2)*(x-3)*(x-4)
= (x^2 - 3*x + 2)*(x^2 - 7*x + 12)
= x^4 - 10*x^3 + 35*x^2 - 50*x + 24
Hence x = -50
Go to Begin
Q02. x^4 - 10*x^3 + 35*x^2 - 50*x + 24 = 0 has roots 1 and 2, find other roots
Method 1 : Use equation theory
Let other roots be p and q
Hence 1 + 2 + p + q = -(-10)/1 or p + q = 7 .... (1)
Hence 1*2*p*q = 24/1 or p*q = 12 ............... (2)
Solve equation (1) and (2), we have p = 3 and q = 4
Method 2 : Use synthetic division
1 -10 +35 -50 +24 | 1
... 1 -09 +26 -24
------------------
1 -09 +26 -24 +00 | 2
... 2 -14 +24
-------------
1 -07 +12 +00
Hence (x-1)*(x-2)*(x^2 - 7*x + 12) = 0
Hence x^2 - 7*x + 12 = 0
Hence (x - 3)*(x - 4) = 0
Hence x = 3 or x = 4
Go to Begin
Q03. Answer
Go to Begin
Q04. Answer
Go to Begin
Q05. Answer
Go to Begin
Q06. Answer
Go to Begin
Q07. Answer
Go to Begin
Q08. Answer
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Q11. Quiz for Equations
Questions
1. Solve Abs(x-2) = 3.
2. Solve x^2 - 3*x + 2 = 0.
3. Solve x^3 - 6*x^2 + 13*x - 12 = 0.
4. Solve x^4 - 10*x^3 + 37*x^2 - 64*x + 48 = 0.
5. Solve x^4 - 16 = 0.
6. p,q,r,s are roots of x^4 - 10*x^3 + 37*x^2 - 64*x + 48 = 0. Find p*q*r*s.
7. Solve x^4 + x^3 + x^2 + x + 1 = 0 graphically.
8. Solve e^x + 2*e^(-x) - 1 = 0.
9. Find the value of ln(e^2.5) - 2.5.
10 How many real roots in Abs(x^2 - 6*Abs(x) + 8) = 1/2.
Go to Begin
Q12. Answers of quiz for Equations
Answers
1. Solve Abs(x - 2) = 3.
x - 2 = +3 and x = +5.
x - 2 = -3 and x = -1.
2. Solve x^2 - 3*x + 2 = 0.
(x - 1)*(x - 2) = 0 and x= 1 or 2
3. Solve x^3 - 6*x^2 + 13*x - 12 = 0.
Use synthetic division. Trial values are 1, -1, 2, -2, 3, -3, 4, -4, ....
4. Solve x^4 - 10*x^3 + 37*x^2 - 64*x + 48 = 0.
Use synthetic division. Rrial values 1, -1, 2, -2, .....
5. Solve x^4 - 16 = 0.
16 = 2^4 and use factors of x^4 - a^4
6. p,q,r,s are roots of x^4 - 10*x^3 + 37*x^2 - 64*x + 48 = 0. Find p*q*r*s.
Product of roots = 48/1.
7. Solve x^4 + x^3 + x^2 + x + 1 = 0 graphically.
Draw a large unit circle (one unit = 10 cm).
Draw angles 72, 144, 216 and 288 and cut circle at A, B, C, D.
Measure the coordiantes of A, B, C, D
Hence x1 = a1 + i*b1, ....
8. Solve e^x + 2*e^(-x) - 1 = 0.
(e^x)^2 - e^x + 2 = 0. Solve this equation using factors.
9. Find the value of ln(e^2.5) - 2.5.
Use ln(e^x) = x.
10 How many real roots in Abs(x^2 - 6*Abs(x) + 8) = 1/2.
There are 8 real roots
Study subject
Graph of y = Abs(x^2 - 6*Abs(x) + 8)
Go to Begin
AL 11 13. Reference
1. Solve polynomial equation on PC computer : MD2002 Section 17.
2. Equations including absolute on internet : See keywords absolute.
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.