Counter
Mathematics Dictionary
Dr. K. G. Shih


Algebraic Topic Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
Q | R | S | T | U | V | W | X | Y | Z |
Topics by Keywords


Q01. A

  • 21 05 Absolute : Solve Abs(x^2 - 6*Abs(x) + 8) = 0.5
  • 03 03 Abundant number
  • 03 11 Amicable number pairs : First amicale pairs are 220 and n. Find n
  • 03 11 Amicable number pairs : First amicale pairs are 1184 and n. Find n
  • 04 13 Angle between two lines
  • 04 15 Angle between y = 2*x +3 and its inverse
  • 08 14 AP : Angles of triangle ABC are 3 consecutive GP terms. Find angles
  • 27 03 AP : a^2,b^2,c^2 in AP then 1/(a+b), 1/(a+c),1/(b+c) in AP
  • 27 04 AP
    • Sum[t(i)] = A for i=1 to a
    • Sum[t(i)] = B for i=1 to b
    • Sum[t(i)] = C for i=1 to c
    • Find A*a*b*c*(b-c) + B*a*b*c*(c-a) + C*a*b*c*(a-b) if t(i) in AP
  • 08 01 Arithemetic seires
  • 17 00 Arrangement : n different things
  • 03 13 Arrangement : An integer n is expressed as the sum of 3 integers
  • Asymptotes
    • AL 21 03 : y = x + 2/x
    • AL 27 05 : y = (x^2 + x - 12)/(x^2 - 4)
    • AL 27 03 : y = x^2 + 1/x
    • AL 27 12 : y = x^3 + 1/x
    • AL 16 05 : Asymptote in parabola form

Go to Begin

Q02. B

  • 17 08 Binomial distribution : B(x) = C(n,x)*(p^x)*(q^n-x))
  • 07 02 Binomial expansion : Coeff of (r+1)th term = C(n,r)
  • 03 13 Binomila expansion : Prove that 5^(2*n) - 24*n - 1 is divisible by 576
  • 07 03 Binomial expansion and Pascal triangle
    • 07 04 Sum[C(n+1),2] = C(n+2,3)
    • 07 05 Sum[C(n+2),3] = C(n+3,4)
    • 07 06 Sum[C(n+3),4] = C(n+4,5)
    • 07 04 Sum[C(n+4),5] = C(n+5,6)
  • 07 02 Binomial expansion coefficient
      Sum[C(n,r)] = 2^n for r = 0, 1, 2, ..... n
    • C(n,0) + C(n,2) + ... = C(n,1) + C(n,3) + .... for n is odd
    • C(n,r) = C(n,n-r)
  • 07 01 Binomial theorem : T(n) = C(n,r)*(x^(n-r))*(y^r)
  • 07 08 Binomial theorem : Find Sum[n^4] usimg Sum[C(n+3,4)] = C(n+4,5)
  • 07 09 Binomial theorem : Fibonacci's sequence in Pascal triangle
  • 07 10 Binomial theorem : Series from C(n,r)
  • 07 11 Binomial theorem : Constant oefficient in (x + 1/(x^2))^n
  • 07 12 Binomial theorem : Expand Sqr(1 + x^2) in series form
  • 07 13 Binomial theorem : Use Pascal triangle find coefficients of (x+y)^7
  • 07 14 Binomial theorem : Expand (x+1)^n
  • 07 15 Binomial theorem : Find coefficient (x^3)*(y^5) in expansion of (x+y)^n
  • 07 16 Binomial theorem : Expand 1/(1 + x^2)
  • 07 17 Binomial theorem : C(n,r-1) + C(n,r) = C(n+1,r)
  • 07 18 Binomial theorem : Coeff of x^(r-1), x^r and x^(r+1) are 3 consecutive AP
  • 07 19 Binomial theorem : Coefficients of (x^p)*(y^q)*(z^r) in (x+y+z)^n

Go to Begin

Q03. C

  • 17 03 Combination : C(n,r)
  • 03 02 Complex number system
  • 08 16 Compound annually Interest
  • 12 02 Conjugate complex
    • If (a+b*i) and (c+d*i) are conjugate, then c=a and d=-b
    • Sum is real 2*a and product is real a^2 + b^2
  • 11 02 Cubic equations
  • 21 01 Cubic functions : Graphic solution

Go to Begin

Q04. D
  • 03 03 Deficient number
  • 12 10 DeMoivre's theory : Solve X^4 + X^3 + x^2 + x + 1 = 0
  • 12 10 DeMoivre's theory : Solve X^5 - 1 = 0
  • 13 00 Determinant
  • 05 04 Directrix of parabola
  • 05 01 Discriminant of y = a*x^2 + b*x + c
  • 02 16 Domain and range

Go to Begin

Q05. E
  • 06 07 Euler function
  • 11 08 Equations : Solve 2 linear equations
  • 11 09 Equations : Solve 3 linear equations
  • 11 05 Equations : Solve |x^2 - 6*|x| + 8| = 0.5
  • 18 11 Equations : Solve x^4 - i = 0
  • 18 12 Equations : Solve x^4 + i = 0
  • 11 07 Equations : Solve x^4 - x^3 + x^2 - x + 1 = 0
  • 11 06 Equations : Solve x^4 + x^3 + x^2 + x + 1 = 0
  • 11 07 Equations : Solve x^n - 1 = 0
  • 11 06 Equations : Solve x^n + 1 = 0
  • 11 07 Equations : Solve x^n - 1 = 0
  • 18 04 Equations : Solve x^5 - 1 = 0
  • 18 07 Equations : Solve x^5 + 1 = 0
  • 18 10 Equations : Solve x^4 - x^3 + x^2 - x + 1 = 0
  • 18 09 Equations : Solve x^4 + x^3 + x^2 + x + 1 = 0
  • 06 09 Exponent : e^x + e^(2*x) + e^y + e^(2*y) = 12
  • 06 11 Exponent : Sketch e^x + e^(2*x) + e^y + e^(2*y) = 12
  • 06 16 Exponential Family
  • 06 04 Exponential Law

Go to Begin

Q06. F

  • 02 11 Factor of expressions
  • 01 04 Factor theory
  • 07 01 Factorial n!
  • 07 09 Fibonacci's sequence in Pascal triangle
  • 05 04 Focus of parabola
  • 02 16 Function : Domain and range
  • 16 09 Function : Domain and range
  • 02 08 Function : Names
  • 02 09 Function : Properties

Go to Begin

Q07. G

  • 08 02 Geometric series
  • 08 15 GP : Angles of triangle ABC are 3 consecutive GP terms. Find angles if r=3

Go to Begin

Q08. H
  • 06 16 Hyperbolic functions : e.g. y = sinh(x)
  • 06 17 Hyperbolic functions : Identities
    • Prove that cosh(x)^2 - sinh(x) = 1
    • Prove that sinh(2*x) = 2*sinh(x)*cosh(x)
    • Prove that sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
    • Prove that d/dx(sinh(x)) = cosh(x)
  • 17 09 Hypergeometric probability H(x) = C(n,x)*C(N-n,n-x)/C(N,n)
  • 17 10 Hypergeometric probability H(x) = C(n,x)*C(N-n,s-x)/C(N,s)

Go to Begin

Q09. I

  • 19 02 Indefinite equation : One people and one hundred cake
  • 14 00 Induction method
  • 14 06 Induction : S(n) = 1/(1*3) + 1/(3*5) + .... = (1 - 1/(2*n+1))/2
  • 14 07 Induction : S(n) = 1/(1*2*3) + 1/(2*3*4) + .... = n*(n+3)/(4*(n+1)*(n+2)
  • 14 08 Induction : S(n) = 1^2 + 3^2 + 5^2 + ... = n*(4*n^2 - 1)/3
  • 14 09 Induction : S(n) = 1*(2^2) + 2*(3^2) + ... = n*(n+1)*(n+2)*(3*n+5)/12
  • 14 10 Induction : S(n) = (1 -4/1)*(1 - 4/9)*(1 - 4/25)*(1 - 4/49)*......
  • 14 11 Induction : S(n) = (1 + 1)*(1 + 1/2)*(1 + 1/3)*.....*(1 + 1/n) = n + 1
  • 14 12 Induction : S(n) = (1^2)/(1*3) + (2^2)/(3*5) + .... = (n*(n+1))/(2*(2*n+1))
  • 14 13 Induction : S(n) = 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2. Is it true
  • 14 14 Induction : S(n) = n^2 + n + 41. Is it always a prime number ?
  • 14 17 Induction : Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)
  • 15 00 Inequality
    • 15 02 Solve x^2 - 6*x + 8 < 0
    • 15 08 Solve (x-1)/(x+1) > 1
    • 15 09 Solve (x-1)/(x+1) > 2
  • 08 16 Interest : Compound annually
  • 08 17 Interest : Deposit with fixed amount, rate and period
  • 04 16 Intersection between y = 2*x +3 and its inverse
  • 06 08 Inverse of y = e^x
  • 09 12 Inverse of hyperbolic functions
  • 04 03 Inverse of linear functions
  • 09 03 Inverse of y = ln(x)
  • 05 03 Inverse of quadratic functions

Go to Begin

Q10. J


Go to Begin

Q11. K


Go to Begin

Q12. L

  • 04 02 Linear functions
  • 04 03 Linear equations
  • 11 01 Linear equations
  • 09 02 Logarithmic laws

Go to Begin

Q13. M

  • 03 04 Magic number patterns
  • 03 05 Matrix pattern : Find row number and column number of 100
    • 1, 03, 06, 10, 15, 21, ...
    • 2, 05, 09, 14, 20, .......
    • 4, 08, 13, 19, ...........
    • 7, 12, 18, ...............
  • 03 10 Multiple of 49 whose digits are same
  • 03 10 Multiple of number whose digits are same

Go to Begin

Q14. N

  • 17 12 Normal distribution : N(z LT a)
  • 03 13 Number : 5^(2*n) - 24*n - 1 is divisible by 576
  • 03 11 Number : Amicable number pairs.
  • 03 13 Number : An integer n is expressed as the sum of 3 integers
  • 03 05 Number : Numbers arranged in matrix. 1st row sequence 1,3,6,10, ...
  • 03 12 Number : Perfect numbers
  • 03 03 Number : Properties based on factors of number
  • 14 15 Number : Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
  • 14 16 Number : Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6
  • 07 01 n! : definition and trailor zeros in n!

Go to Begin

Q15. O


Go to Begin

Q16. P

  • 05 04 Parabola : Locus, Focus and directrix
  • 08 05 Pascal triangle : Sequence and series
  • 03 12 Perfect number : How to find the third perfect number ?
  • 03 07 Perfect square numbers.
  • 17 01 Permutation : P(n,r)
    • 17 02 Take r from N symbols for arrangement without duplicate : P(n,r)
    • 17 02 Take r from N symbols for arrangement with duplicate : n^r
  • 08 13 Pi in series
  • 21 00 Polynomial equation
    • 21 11 Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0

Go to Begin

Q17. Q

  • 11 04 Quaint equation
  • 21 01 Quaint equation : Graphic solution
  • 27 11 Quaint equation : y = x^5 3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
  • 12 06 Quartic equation : (x-p)*(x-q)*(x-r)*(x-s) = t
  • 11 03 Quartic equation : (x-5)*(x-7)*(x+4)*(x+6) = 504
  • 21 01 Quartic function : y = a*x^4 + b*x^3 + ....
  • 21 01 Quartic function : y = (x-p)*(x-q)*(x-r)*(x-s) - t
  • 27 10 Quartic function : y = x^4 + x^3 -4*x^2 + x + 1
  • 27 11 Quaint equation : y = x^5 3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
  • 11 01 Quadratic equations
  • 11 10 Quadratic equations : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
  • 05 01 Quadratic functions : Defintion and application
  • 05 02 Quadratic functions : With absolute operation
  • 05 03 Quadratic functions : Inverse
  • 05 04 Quadratic functions : Parabola

Go to Begin

Q18. R

  • 16 01 Rational function : y = 1/(x + 1)
  • 16 02 Rational function : y = 1/(x^2 - 1)
  • 16 03 Rational function : y = 1/(x^3 -2*x - x + 2)
  • 16 06 Rational function : y = x + 4/(x^2)
  • 27 12 Rational function : y = x^3 + 1/x
  • 27 13 Rational function : y = x^2 + 1/x
  • 27 14 Rational function : y = x^3 + 1/x and y = x^3 - 1/x (compare)
  • 16 04 Rational function : y = (x^2 -2*x + 1)/(x)
  • 16 05 Rational function : y = ((x - 1)^3)/(2*x)
  • 27 05 Rational function : y = (x^2 + x - 12)/(x^2 - 4)
  • 03 01 Real number system
  • 01 04 Remainder theory

Go to Begin

Q19. S

  • 07 04 Sequence in Pascal triangle.
    • T(1)
    • T(n)
    • T(n*(n+1)/2!)
    • T(n*(n+1)*(n+2)/3!)
    • T(n*(n+1)*(n+2)*(n+3)/4!)
  • 08 01 Series : A.P.
  • 08 02 Series : G.P.
  • 08 13 Series : pi
  • 08 03 Series : Sum[n^2] = n*(n+1)*(2*n+1)/6.
  • 08 04 Series : Sum[n^3] = (n*(n+1)/2)^2.
  • 07 08 Series : Sum[n^4] = ?
  • 08 05 Series : Series and sequence in Pascal triangle.
    • Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
    • Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
    • Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
  • 08 05 Series : Series and sequence in Pascal triangle.
    • Sum[C(n+1),2)] = C(n+2,3)
    • Sum[C(n+2),3)] = C(n+3,4)
    • Sum[C(n+3),4)] = C(n+4,5)
  • 08 06 Series : Special
    • S(n) = 1/(1*2) + 1/(2*3) + 1/(3*4) + ........ + 1/((n-1)*n) = ?.
    • S(n) = 1/(1*2*3) + 1/(2*3*4) + ... + 1/((n*(n+1)*(n+2)) = ?
    • S(n) = 1/3 + 1/15 + 1/35 + ...... + 1/((2*n-1)*(2*n+1)) = ?
  • 08 08 Series : 1^3 + 3^3 + 5^3 + ..... (2*n-1)^3 = ?
  • 08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + ..... n*((n+1)^2) = ?
  • 08 07 Series : S(n) = 1 - 2 + 3 - 4 + 5 - 6 + ....... - n if n is even
  • 08 08 Series : 1^3 + 3^3 + 5^3 + .... = ?
  • 08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + .... = ?
  • 08 10 Series : 1^3 + 2^3 + ... + n^3 GT (n^4)/4 GT 1^3 + 2^3 + ... +(n-1)^3
  • 08 11 Series : (1-1/4)*(1-1/9)*(1-1/16)*....*(1-1/((n+1)^2 = (n+1)/2*n. n GT 1
  • 08 12 Series : 1 - 2 + 3 - 4 + ...... + n and n is odd
  • 11 10 Simultaneous equations
    • x + y = 3 (line)
    • x*y = 2 (Hyperbola)
  • 11 10 Simultaneous equations
    • x - y = 1
    • x*y = 2 (Hyperbola)
  • 11 10 Simultaneous equations
    • x^2 + y^2 = 4 (Circle)
    • x*y = 1 (Hyperbola)
  • 16 06 Slant asymptote in y = x + 4/(x^2)
  • 03 07 Square free numbers.
  • 03 08 Square root : How to find Sqr(3) ?
  • 02 06 Sythetic division

Go to Begin

Q20. T

  • AL 27 09 Three points method : Sketch y = a*x^2 + b*x + c

Go to Begin

Q21. U


Go to Begin

Q22. V

  • 05 05 Vertex of quadratic function
  • 16 06 Vertical asymptote in y = x + 4/(x^2)

Go to Begin

Q23. W


Go to Begin

Q24. X

  • 11 10 x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
  • 18 11 x^4 - i = 0
  • 18 12 x^4 + i = 0
  • 18 10 x^4 - x^3 + x^2 - x + 1 = 0
  • 18 09 x^4 + x^3 + x^2 + x + 1 = 0
  • 18 04 x^5 - 1 = 0
  • 18 07 x^5 + 1 = 0
  • 21 11 x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0

Go to Begin

Q25. Y

  • AL 16 01 : y = 1/(x + 1)
  • AL 16 02 : y = 1/(x^2 - 1)
  • AL 16 03 : y = 1/(x^3 -2*x - x + 2)
  • AL 16 06 : y = x + 4/(x^2)
  • AL 16 04 : y = (x^2 -2*x + 1)/(x)
  • AL 16 05 : y = ((x - 1)^3)/(2*x)
  • AL 27 05 : y = (x^2 + x - 12)/(x^2 - 4)
  • AL 27 06 : y = x + 1/x
  • AL 27 07 : y = x^2 + 1/x
  • AL 27 12 : y = x^3 + 1/x
  • AL 27 13 : y = x^2 + 1/x
  • AL 27 14 : y = x^3 + 1/x and y = x^3 - 1/x
  • AL 27 10 : y = x^4 + x^3 -4*x^2 + x + 1
  • AL 27 11 : y = x^5 3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12

    Go to Begin

    Q26. Z


    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1