Mathematics Dictionary
Dr. K. G. Shih
Algebraic Topic Index
Symbol Defintion
...... Example : x^2 = square of x
Keywords
.............. Find given keyword by numbers
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
|
X
|
Y
|
Z
|
Topics by Keywords
Q01. A
21 05 Absolute : Solve Abs(x^2 - 6*Abs(x) + 8) = 0.5
03 03 Abundant number
03 11 Amicable number pairs : First amicale pairs are 220 and n. Find n
03 11 Amicable number pairs : First amicale pairs are 1184 and n. Find n
04 13 Angle between two lines
04 15 Angle between y = 2*x +3 and its inverse
08 14 AP : Angles of triangle ABC are 3 consecutive GP terms. Find angles
27 03 AP : a^2,b^2,c^2 in AP then 1/(a+b), 1/(a+c),1/(b+c) in AP
27 04 AP
Sum[t(i)] = A for i=1 to a
Sum[t(i)] = B for i=1 to b
Sum[t(i)] = C for i=1 to c
Find A*a*b*c*(b-c) + B*a*b*c*(c-a) + C*a*b*c*(a-b) if t(i) in AP
08 01 Arithemetic seires
17 00 Arrangement : n different things
03 13 Arrangement : An integer n is expressed as the sum of 3 integers
Asymptotes
AL 21 03 : y = x + 2/x
AL 27 05 : y = (x^2 + x - 12)/(x^2 - 4)
AL 27 03 : y = x^2 + 1/x
AL 27 12 : y = x^3 + 1/x
AL 16 05 : Asymptote in parabola form
Go to Begin
Q02. B
17 08 Binomial distribution : B(x) = C(n,x)*(p^x)*(q^n-x))
07 02 Binomial expansion : Coeff of (r+1)th term = C(n,r)
03 13 Binomila expansion : Prove that 5^(2*n) - 24*n - 1 is divisible by 576
07 03 Binomial expansion and Pascal triangle
07 04 Sum[C(n+1),2] = C(n+2,3)
07 05 Sum[C(n+2),3] = C(n+3,4)
07 06 Sum[C(n+3),4] = C(n+4,5)
07 04 Sum[C(n+4),5] = C(n+5,6)
07 02 Binomial expansion coefficient
Sum[C(n,r)] = 2^n for r = 0, 1, 2, ..... n
C(n,0) + C(n,2) + ... = C(n,1) + C(n,3) + .... for n is odd
C(n,r) = C(n,n-r)
07 01 Binomial theorem : T(n) = C(n,r)*(x^(n-r))*(y^r)
07 08 Binomial theorem : Find Sum[n^4] usimg Sum[C(n+3,4)] = C(n+4,5)
07 09 Binomial theorem : Fibonacci's sequence in Pascal triangle
07 10 Binomial theorem : Series from C(n,r)
07 11 Binomial theorem : Constant oefficient in (x + 1/(x^2))^n
07 12 Binomial theorem : Expand Sqr(1 + x^2) in series form
07 13 Binomial theorem : Use Pascal triangle find coefficients of (x+y)^7
07 14 Binomial theorem : Expand (x+1)^n
07 15 Binomial theorem : Find coefficient (x^3)*(y^5) in expansion of (x+y)^n
07 16 Binomial theorem : Expand 1/(1 + x^2)
07 17 Binomial theorem : C(n,r-1) + C(n,r) = C(n+1,r)
07 18 Binomial theorem : Coeff of x^(r-1), x^r and x^(r+1) are 3 consecutive AP
07 19 Binomial theorem : Coefficients of (x^p)*(y^q)*(z^r) in (x+y+z)^n
Go to Begin
Q03. C
17 03 Combination : C(n,r)
03 02 Complex number system
08 16 Compound annually Interest
12 02 Conjugate complex
If (a+b*i) and (c+d*i) are conjugate, then c=a and d=-b
Sum is real 2*a and product is real a^2 + b^2
11 02 Cubic equations
21 01 Cubic functions : Graphic solution
Go to Begin
Q04. D
03 03 Deficient number
12 10 DeMoivre's theory : Solve X^4 + X^3 + x^2 + x + 1 = 0
12 10 DeMoivre's theory : Solve X^5 - 1 = 0
13 00 Determinant
05 04 Directrix of parabola
05 01 Discriminant of y = a*x^2 + b*x + c
02 16 Domain and range
Go to Begin
Q05. E
06 07 Euler function
11 08 Equations : Solve 2 linear equations
11 09 Equations : Solve 3 linear equations
11 05 Equations : Solve |x^2 - 6*|x| + 8| = 0.5
18 11 Equations : Solve x^4 - i = 0
18 12 Equations : Solve x^4 + i = 0
11 07 Equations : Solve x^4 - x^3 + x^2 - x + 1 = 0
11 06 Equations : Solve x^4 + x^3 + x^2 + x + 1 = 0
11 07 Equations : Solve x^n - 1 = 0
11 06 Equations : Solve x^n + 1 = 0
11 07 Equations : Solve x^n - 1 = 0
18 04 Equations : Solve x^5 - 1 = 0
18 07 Equations : Solve x^5 + 1 = 0
18 10 Equations : Solve x^4 - x^3 + x^2 - x + 1 = 0
18 09 Equations : Solve x^4 + x^3 + x^2 + x + 1 = 0
06 09 Exponent : e^x + e^(2*x) + e^y + e^(2*y) = 12
06 11 Exponent : Sketch e^x + e^(2*x) + e^y + e^(2*y) = 12
06 16 Exponential Family
06 04 Exponential Law
Go to Begin
Q06. F
02 11 Factor of expressions
01 04 Factor theory
07 01 Factorial n!
07 09 Fibonacci's sequence in Pascal triangle
05 04 Focus of parabola
02 16 Function : Domain and range
16 09 Function : Domain and range
02 08 Function : Names
02 09 Function : Properties
Go to Begin
Q07. G
08 02 Geometric series
08 15 GP : Angles of triangle ABC are 3 consecutive GP terms. Find angles if r=3
Go to Begin
Q08. H
06 16 Hyperbolic functions : e.g. y = sinh(x)
06 17 Hyperbolic functions : Identities
Prove that cosh(x)^2 - sinh(x) = 1
Prove that sinh(2*x) = 2*sinh(x)*cosh(x)
Prove that sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
Prove that d/dx(sinh(x)) = cosh(x)
17 09 Hypergeometric probability H(x) = C(n,x)*C(N-n,n-x)/C(N,n)
17 10 Hypergeometric probability H(x) = C(n,x)*C(N-n,s-x)/C(N,s)
Go to Begin
Q09. I
19 02 Indefinite equation : One people and one hundred cake
14 00 Induction method
14 06 Induction : S(n) = 1/(1*3) + 1/(3*5) + .... = (1 - 1/(2*n+1))/2
14 07 Induction : S(n) = 1/(1*2*3) + 1/(2*3*4) + .... = n*(n+3)/(4*(n+1)*(n+2)
14 08 Induction : S(n) = 1^2 + 3^2 + 5^2 + ... = n*(4*n^2 - 1)/3
14 09 Induction : S(n) = 1*(2^2) + 2*(3^2) + ... = n*(n+1)*(n+2)*(3*n+5)/12
14 10 Induction : S(n) = (1 -4/1)*(1 - 4/9)*(1 - 4/25)*(1 - 4/49)*......
14 11 Induction : S(n) = (1 + 1)*(1 + 1/2)*(1 + 1/3)*.....*(1 + 1/n) = n + 1
14 12 Induction : S(n) = (1^2)/(1*3) + (2^2)/(3*5) + .... = (n*(n+1))/(2*(2*n+1))
14 13 Induction : S(n) = 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2. Is it true
14 14 Induction : S(n) = n^2 + n + 41. Is it always a prime number ?
14 17 Induction : Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)
15 00 Inequality
15 02 Solve x^2 - 6*x + 8 < 0
15 08 Solve (x-1)/(x+1) > 1
15 09 Solve (x-1)/(x+1) > 2
08 16 Interest : Compound annually
08 17 Interest : Deposit with fixed amount, rate and period
04 16 Intersection between y = 2*x +3 and its inverse
06 08 Inverse of y = e^x
09 12 Inverse of hyperbolic functions
04 03 Inverse of linear functions
09 03 Inverse of y = ln(x)
05 03 Inverse of quadratic functions
Go to Begin
Q10. J
Go to Begin
Q11. K
Go to Begin
Q12. L
04 02 Linear functions
04 03 Linear equations
11 01 Linear equations
09 02 Logarithmic laws
Go to Begin
Q13. M
03 04 Magic number patterns
03 05 Matrix pattern : Find row number and column number of 100
1, 03, 06, 10, 15, 21, ...
2, 05, 09, 14, 20, .......
4, 08, 13, 19, ...........
7, 12, 18, ...............
03 10 Multiple of 49 whose digits are same
03 10 Multiple of number whose digits are same
Go to Begin
Q14. N
17 12 Normal distribution : N(z LT a)
03 13 Number : 5^(2*n) - 24*n - 1 is divisible by 576
03 11 Number : Amicable number pairs.
03 13 Number : An integer n is expressed as the sum of 3 integers
03 05 Number : Numbers arranged in matrix. 1st row sequence 1,3,6,10, ...
03 12 Number : Perfect numbers
03 03 Number : Properties based on factors of number
14 15 Number : Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
14 16 Number : Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6
07 01 n! : definition and trailor zeros in n!
Go to Begin
Q15. O
Go to Begin
Q16. P
05 04 Parabola : Locus, Focus and directrix
08 05 Pascal triangle : Sequence and series
03 12 Perfect number : How to find the third perfect number ?
03 07 Perfect square numbers.
17 01 Permutation : P(n,r)
17 02 Take r from N symbols for arrangement without duplicate : P(n,r)
17 02 Take r from N symbols for arrangement with duplicate : n^r
08 13 Pi in series
21 00 Polynomial equation
21 11 Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
Go to Begin
Q17. Q
11 04 Quaint equation
21 01 Quaint equation : Graphic solution
27 11 Quaint equation : y = x^5 3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
12 06 Quartic equation : (x-p)*(x-q)*(x-r)*(x-s) = t
11 03 Quartic equation : (x-5)*(x-7)*(x+4)*(x+6) = 504
21 01 Quartic function : y = a*x^4 + b*x^3 + ....
21 01 Quartic function : y = (x-p)*(x-q)*(x-r)*(x-s) - t
27 10 Quartic function : y = x^4 + x^3 -4*x^2 + x + 1
27 11 Quaint equation : y = x^5 3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
11 01 Quadratic equations
11 10 Quadratic equations : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
05 01 Quadratic functions : Defintion and application
05 02 Quadratic functions : With absolute operation
05 03 Quadratic functions : Inverse
05 04 Quadratic functions : Parabola
Go to Begin
Q18. R
16 01 Rational function : y = 1/(x + 1)
16 02 Rational function : y = 1/(x^2 - 1)
16 03 Rational function : y = 1/(x^3 -2*x - x + 2)
16 06 Rational function : y = x + 4/(x^2)
27 12 Rational function : y = x^3 + 1/x
27 13 Rational function : y = x^2 + 1/x
27 14 Rational function : y = x^3 + 1/x and y = x^3 - 1/x (compare)
16 04 Rational function : y = (x^2 -2*x + 1)/(x)
16 05 Rational function : y = ((x - 1)^3)/(2*x)
27 05 Rational function : y = (x^2 + x - 12)/(x^2 - 4)
03 01 Real number system
01 04 Remainder theory
Go to Begin
Q19. S
07 04 Sequence in Pascal triangle.
T(1)
T(n)
T(n*(n+1)/2!)
T(n*(n+1)*(n+2)/3!)
T(n*(n+1)*(n+2)*(n+3)/4!)
08 01 Series : A.P.
08 02 Series : G.P.
08 13 Series : pi
08 03 Series : Sum[n^2] = n*(n+1)*(2*n+1)/6.
08 04 Series : Sum[n^3] = (n*(n+1)/2)^2.
07 08 Series : Sum[n^4] = ?
08 05 Series : Series and sequence in Pascal triangle.
Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
08 05 Series : Series and sequence in Pascal triangle.
Sum[C(n+1),2)] = C(n+2,3)
Sum[C(n+2),3)] = C(n+3,4)
Sum[C(n+3),4)] = C(n+4,5)
08 06 Series : Special
S(n) = 1/(1*2) + 1/(2*3) + 1/(3*4) + ........ + 1/((n-1)*n) = ?.
S(n) = 1/(1*2*3) + 1/(2*3*4) + ... + 1/((n*(n+1)*(n+2)) = ?
S(n) = 1/3 + 1/15 + 1/35 + ...... + 1/((2*n-1)*(2*n+1)) = ?
08 08 Series : 1^3 + 3^3 + 5^3 + ..... (2*n-1)^3 = ?
08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + ..... n*((n+1)^2) = ?
08 07 Series : S(n) = 1 - 2 + 3 - 4 + 5 - 6 + ....... - n if n is even
08 08 Series : 1^3 + 3^3 + 5^3 + .... = ?
08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + .... = ?
08 10 Series : 1^3 + 2^3 + ... + n^3 GT (n^4)/4 GT 1^3 + 2^3 + ... +(n-1)^3
08 11 Series : (1-1/4)*(1-1/9)*(1-1/16)*....*(1-1/((n+1)^2 = (n+1)/2*n. n GT 1
08 12 Series : 1 - 2 + 3 - 4 + ...... + n and n is odd
11 10 Simultaneous equations
x + y = 3 (line)
x*y = 2 (Hyperbola)
11 10 Simultaneous equations
x - y = 1
x*y = 2 (Hyperbola)
11 10 Simultaneous equations
x^2 + y^2 = 4 (Circle)
x*y = 1 (Hyperbola)
16 06 Slant asymptote in y = x + 4/(x^2)
03 07 Square free numbers.
03 08 Square root : How to find Sqr(3) ?
02 06 Sythetic division
Go to Begin
Q20. T
AL 27 09 Three points method : Sketch y = a*x^2 + b*x + c
Go to Begin
Q21. U
Go to Begin
Q22. V
05 05 Vertex of quadratic function
16 06 Vertical asymptote in y = x + 4/(x^2)
Go to Begin
Q23. W
Go to Begin
Q24. X
11 10 x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
18 11 x^4 - i = 0
18 12 x^4 + i = 0
18 10 x^4 - x^3 + x^2 - x + 1 = 0
18 09 x^4 + x^3 + x^2 + x + 1 = 0
18 04 x^5 - 1 = 0
18 07 x^5 + 1 = 0
21 11 x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
Go to Begin
Q25. Y
AL 16 01 : y = 1/(x + 1)
AL 16 02 : y = 1/(x^2 - 1)
AL 16 03 : y = 1/(x^3 -2*x - x + 2)
AL 16 06 : y = x + 4/(x^2)
AL 16 04 : y = (x^2 -2*x + 1)/(x)
AL 16 05 : y = ((x - 1)^3)/(2*x)
AL 27 05 : y = (x^2 + x - 12)/(x^2 - 4)
AL 27 06 : y = x + 1/x
AL 27 07 : y = x^2 + 1/x
AL 27 12 : y = x^3 + 1/x
AL 27 13 : y = x^2 + 1/x
AL 27 14 : y = x^3 + 1/x and y = x^3 - 1/x
AL 27 10 : y = x^4 + x^3 -4*x^2 + x + 1
AL 27 11 : y = x^5 3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
Go to Begin
Q26. Z
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.