Counter
Mathematics Dictionary
Dr. K. G. Shih


Algebraic Examples

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
Q | R | S | T | U | V | W | X | Y | Z |
Topics by Keywords


Q01. A

  • Arithematic progression (AP)
    • AL 27 03 : a^2,b^2,c^2 in AP then 1/(a+b), 1/(a+c),1/(b+c) in AP
    • AL 27 04 : Find A*a*b*c*(b-c) + B*a*b*c*(c-a) + C*a*b*c*(a-b) if t(i) in AP
      • Sum[t(i)] = A for i=1 to a
      • Sum[t(i)] = B for i=1 to b
      • Sum[t(i)] = C for i=1 to c
    • AL 08 14 : Angle of triangle ABC in AP, find angles
  • Arrangement
    • AL 03 13 : n = n1 + n2 + n3, find arrangement of n1, n2, n3
  • Asymptote
    • AL 16 05 : Study the graph of y = ((x - 1)^2)/(2*x)
    • AL 16 06 : Study the graph of y = x + 2/x^2
    • AL 27 07 : Study the graph of y = (x^2 + x - 12)/(x^2 - 4)

    Go to Begin

    Q02. B

  • Binomial theory
    • AL 03 14 : 5^(2*n) - 24*n - 1 is divisible by 576

    Go to Begin

    Q03. C


    Go to Begin

    Q04. D

    Go to Begin

    Q05. E
  • 21 11 Equation : Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
    • AL 11 15 Solution
    • AL 21 11 Diagram
  • Equations
    • AL 11 17 : x^4 + b*x^3 + c*x^2 + d*x + e = 0 has roots 1,2,3,4
    • AL 11 18 : x^4 - 10*x^3 + 35*x^2 - 50*x + 24 = 0 has roots 1,2. Find others
  • 06 11 Exponent : e^x + e^(2*x) + e^y + e^(2*y) = 12
    • 06 11 Sketch
    • 06 12 Find y if x = ln(2)

    Go to Begin

    Q06. F

    • 01 04 Factor theory
    • 07 01 Factorial n!
    • 07 09 Fibonacci's sequence in Pascal triangle
    • 05 04 Focus of parabola

    Go to Begin

    Q07. G

    • AL 08 02 : Geometric series
    • AL 08 15 : Angles of triangle ABC in GP, find angles

    Go to Begin

    Q08. H
  • 06 17 Hyperbolic functions : Identities
    • Prove that cosh(x)^2 - sinh(x)^2 = 1
    • Prove that sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
    • Prove that sinh(2*x) = 2*sinh(x)*cosh(x)
  • 17 09 Hypergeometric probability H(x) = C(n,x)*C(N-n,n-x)/C(N,n)
  • 17 10 Hypergeometric probability H(x) = C(n,x)*C(N-n,s-x)/C(N,s)
    Go to Begin

    Q09. I

  • Induction method
    • 14 00 Induction method
    • 14 06 Induction : S(n) = 1/(1*3) + 1/(3*5) + .... = (1 - 1/(2*n+1))/2
    • 14 07 Induction : S(n) = 1/(1*2*3) + 1/(2*3*4) + .... = n*(n+3)/(4*(n+1)*(n+2)
    • 14 08 Induction : S(n) = 1^2 + 3^2 + 5^2 + ... = n*(4*n^2 - 1)/3
    • 14 09 Induction : S(n) = 1*(2^2) + 2*(3^2) + ... = n*(n+1)*(n+2)*(3*n+5)/12
    • 14 10 Induction : S(n) = (1 -4/1)*(1 - 4/9)*(1 - 4/25)*(1 - 4/49)*......
    • 14 11 Induction : S(n) = (1 + 1)*(1 + 1/2)*(1 + 1/3)*.....*(1 + 1/n) = n + 1
    • 14 12 Induction : S(n) = (1^2)/(1*3) + (2^2)/(3*5) + .... = (n*(n+1))/(2*(2*n+1))
    • 14 13 Induction : S(n) = 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2. Is it true
    • 14 14 Induction : S(n) = n^2 + n + 41. Is it always a prime number ?
    • 14 17 Induction : Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)
  • 15 00 Inequality
    • 15 02 Solve x^2 - 6*x + 8 < 0
    • 15 08 Solve (x-1)/(x+1) > 1
    • 15 09 Solve (x-1)/(x+1) > 2
  • Inverse
    • 06 08 Inverse of y = e^x
    • 09 12 Inverse of hyperbolic functions
    • 04 03 Inverse of linear functions
    • 09 03 Inverse of y = ln(x)
    • 05 03 Inverse of quadratic functions

    Go to Begin

    Q10. J


    Go to Begin

    Q11. K


    Go to Begin

    Q12. L

  • Linear equations
    • AP 04 11 : Sketch y = Abs(x - 1) + Abs(x + 1)
    • AL 04 12 : Solve Abs(x - 1) + Abs(x + 1) = 3
  • 09 02 Logarithmic laws
    Go to Begin

    Q13. M

  • AL 03 04 Magic number patterns
  • AL 03 05 Matrix pattern : Find row number and column number of 100
    • 1, 03, 06, 10, 15, 21, ...
    • 2, 05, 09, 14, 20, .......
    • 4, 08, 13, 19, ...........
    • 7, 12, 18, ...............
  • AL 03 10 : Multiple of 49 whose digits are same.
    Go to Begin

    Q14. N

    • 17 12 Normal distribution : N(z LT a)
    • Numbers
      • 03 11 : Amicable number pairs 220 and n, find n.
      • 03 05 : Numbers arranged in matrix. 1st row sequence 1,3,6,10, ...
      • 03 12 : Perfect numbers - Find 3rd perfect number
      • 03 03 : Properties based on factors of number.
      • 14 15 : Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
      • 14 16 : Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6
    • 07 01 n! : definition and trailor zeros in n!

    Go to Begin

    Q15. O


    Go to Begin

    Q16. P

    • 05 04 Parabola : Locus, Focus and directrix
    • 08 05 Pascal triangle : Sequence and series
    • 03 12 Perfect number : How to find the third perfect number ?
    • 03 07 Perfect square numbers.
    • 17 01 Permutation : P(n,r)
      • 17 02 Take r from N symbols for arrangement without duplicate : P(n,r)
      • 17 02 Take r from N symbols for arrangement with duplicate : n^r
    • 08 13 Pi in series
    • 21 00 Polynomial equation
      • 21 11 Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0

    Go to Begin

    Q17. Q

    • 11 04 Quaint equation
    • 21 01 Quaint equation : Graphic solution
    • 12 06 Quartic equation : (x-p)*(x-q)*(x-r)*(x-s) = t
    • 11 03 Quartic equation : (x-5)*(x-7)*(x+4)*(x+6) = 504
    • 21 01 Quartic function : y = a*x^4 + b*x^3 + ....
    • 21 01 Quartic function : y = (x-p)*(x-q)*(x-r)*(x-s) - t
    • 11 01 Quadratic equations
    • 11 10 Quadratic equations : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
    • 05 01 Quadratic functions : Defintion and application
    • 05 02 Quadratic functions : With absolute operation
    • 05 03 Quadratic functions : Inverse
    • 05 04 Quadratic functions : Parabola

    Go to Begin

    Q18. R

  • Rational function
    • AL 16 01 : y = 1/(x + 1)
    • AL 16 02 : y = 1/(x^2 - 1)
    • AL 16 03 : y = 1/(x^3 -2*x - x + 2)
    • AL 16 06 : y = x + 4/(x^2)
    • AL 16 04 : y = (x^2 -2*x + 1)/(x)
    • AL 16 05 : y = ((x - 1)^3)/(2*x)
    • AL 27 05 : y = (x^2 + x - 12)/(x^2 -4)
  • 03 01 Real number system
  • 01 04 Remainder theory
    Go to Begin

    Q19. S

    • 27 01 Sequence : 1,3,7,13,21,....
    • 07 04 Sequence in Pascal triangle.
      • T(1)
      • T(n)
      • T(n*(n+1)/2!)
      • T(n*(n+1)*(n+2)/3!)
      • T(n*(n+1)*(n+2)*(n+3)/4!)
    • 08 01 Series : A.P.
    • 08 02 Series : G.P.
    • 08 13 Series : pi
    • Series
      • AL 08 03 Series : Sum[n^2] = n*(n+1)*(2*n+1)/6.
      • AL 08 04 Series : Sum[n^3] = (n*(n+1)/2)^2.
      • AL 07 08 Series : Sum[n^4] = ?
    • Series : Series and sequence in Pascal triangle.
      • AL 08 05 : Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
      • AL 08 06 : Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
      • AL 08 07 : Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
    • Series and sequence in Pascal triangle.
      • AL 08 05 : Sum[C(n+1),2)] = C(n+2,3)
      • AL 08 06 : Sum[C(n+2),3)] = C(n+3,4)
      • AL 08 07 : Sum[C(n+3),4)] = C(n+4,5)
    • AL 08 06 Series : Special
      • S(n) = 1/(1*2) + 1/(2*3) + 1/(3*4) + ........ + 1/((n-1)*n) = ?.
      • S(n) = 1/(1*2*3) + 1/(2*3*4) + ... + 1/((n*(n+1)*(n+2)) = ?
      • S(n) = 1/3 + 1/15 + 1/35 + ...... + 1/((2*n-1)*(2*n+1)) = ?
    • 08 08 Series : 1^3 + 3^3 + 5^3 + ..... (2*n-1)^3 = ?
    • 08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + ..... n*((n+1)^2) = ?
    • 08 07 Series : S(n) = 1 - 2 + 3 - 4 + 5 - 6 + ....... - n if n is even
    • 08 08 Series : 1^3 + 3^3 + 5^3 + .... = ?
    • 08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + .... = ?
    • 08 10 Series : 1^3 + 2^3 + ... + n^3 GT (n^4)/4 GT 1^3 + 2^3 + ... +(n-1)^3
    • 08 11 Series : (1-1/4)*(1-1/9)*(1-1/16)*....*(1-1/((n+1)^2 = (n+1)/2*n. n GT 1
    • 08 12 Series : 1 - 2 + 3 - 4 + ...... + n and n is odd
    • 11 10 Simultaneous equations
      • x + y = 3 (line)
      • x*y = 2 (Hyperbola)
    • 11 10 Simultaneous equations
      • x - y = 1
      • x*y = 2 (Hyperbola)
    • 11 10 Simultaneous equations
      • x^2 + y^2 = 4 (Circle)
      • x*y = 1 (Hyperbola)
    • 16 06 Slant asymptote in y = x + 4/(x^2)
    • 03 07 Square free numbers.
    • 03 08 Square root : How to find Sqr(3) ?

    Go to Begin

    Q20. T


    Go to Begin

    Q21. U


    Go to Begin

    Q22. V

    • 05 05 Vertex of quadratic function
    • 16 06 Vertical asymptote in y = x + 4/(x^2)

    Go to Begin

    Q23. W


    Go to Begin

    Q24. X

    • 11 17 : x^4 + b*x^3 + c*x^2 + d*x + e = 0 has roots 1,2,3,4
    • 11 18 : x^4 - 10*x^3 + 35*x^2 - 50*x + 24 = 0 has roots 1,2. Find others
    • 21 11 : x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
    • 11 10 : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
    • 18 10 : x^4 - x^3 + x^2 - x + 1 = 0
    • 18 09 : x^4 + x^3 + x^2 + x + 1 = 0
    • 18 04 : x^5 - 1 = 0
    • 18 07 : x^5 + 1 = 0
    • 21 11 : x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0

    Go to Begin

    Q25. Y

  • AL 16 01 : y = 1/(x + 1)
  • AL 16 02 : y = 1/(x^2 - 1)
  • AL 16 03 : y = 1/(x^3 -2*x - x + 2)
  • AL 16 06 : y = x + 4/(x^2)
  • AL 16 04 : y = (x^2 -2*x + 1)/(x)
  • AL 16 05 : y = ((x - 1)^3)/(2*x)
  • AL 27 05 : y = (x^2 + x - 12)/(x^2 -4)
  • AL 27 06 : y = x + 1/x
  • AL 27 07 : y = x^2 + 1/x
  • AL 27 08 : y = x + 4/(x^2)
  • AL 27 02 : y = (x^2)/((x^2-1)^2)
    Go to Begin

    Q26. Z


    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1