Mathematics Dictionary
Dr. K. G. Shih
Algebraic Examples
Symbol Defintion
........... Example : LT = less than, x^2 = square of x
Mathematics Dictionary
..... Ennter AL, AN, CA, GC, GE, PM, TR
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
|
X
|
Y
|
Z
|
Topics by Keywords
Q01. A
Arithematic progression (AP)
AL 27 03 : a^2,b^2,c^2 in AP then 1/(a+b), 1/(a+c),1/(b+c) in AP
AL 27 04 : Find A*a*b*c*(b-c) + B*a*b*c*(c-a) + C*a*b*c*(a-b) if t(i) in AP
Sum[t(i)] = A for i=1 to a
Sum[t(i)] = B for i=1 to b
Sum[t(i)] = C for i=1 to c
AL 08 14 : Angle of triangle ABC in AP, find angles
Arrangement
AL 03 13 : n = n1 + n2 + n3, find arrangement of n1, n2, n3
Asymptote
AL 16 05 : Study the graph of y = ((x - 1)^2)/(2*x)
AL 16 06 : Study the graph of y = x + 2/x^2
AL 27 07 : Study the graph of y = (x^2 + x - 12)/(x^2 - 4)
Go to Begin
Q02. B
Binomial theory
AL 03 14 : 5^(2*n) - 24*n - 1 is divisible by 576
Go to Begin
Q03. C
Go to Begin
Q04. D
Go to Begin
Q05. E
21 11 Equation : Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
AL 11 15 Solution
AL 21 11 Diagram
Equations
AL 11 17 : x^4 + b*x^3 + c*x^2 + d*x + e = 0 has roots 1,2,3,4
AL 11 18 : x^4 - 10*x^3 + 35*x^2 - 50*x + 24 = 0 has roots 1,2. Find others
06 11 Exponent : e^x + e^(2*x) + e^y + e^(2*y) = 12
06 11 Sketch
06 12 Find y if x = ln(2)
Go to Begin
Q06. F
01 04 Factor theory
07 01 Factorial n!
07 09 Fibonacci's sequence in Pascal triangle
05 04 Focus of parabola
Go to Begin
Q07. G
AL 08 02 : Geometric series
AL 08 15 : Angles of triangle ABC in GP, find angles
Go to Begin
Q08. H
06 17 Hyperbolic functions : Identities
Prove that cosh(x)^2 - sinh(x)^2 = 1
Prove that sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
Prove that sinh(2*x) = 2*sinh(x)*cosh(x)
17 09 Hypergeometric probability H(x) = C(n,x)*C(N-n,n-x)/C(N,n)
17 10 Hypergeometric probability H(x) = C(n,x)*C(N-n,s-x)/C(N,s)
Go to Begin
Q09. I
Induction method
14 00 Induction method
14 06 Induction : S(n) = 1/(1*3) + 1/(3*5) + .... = (1 - 1/(2*n+1))/2
14 07 Induction : S(n) = 1/(1*2*3) + 1/(2*3*4) + .... = n*(n+3)/(4*(n+1)*(n+2)
14 08 Induction : S(n) = 1^2 + 3^2 + 5^2 + ... = n*(4*n^2 - 1)/3
14 09 Induction : S(n) = 1*(2^2) + 2*(3^2) + ... = n*(n+1)*(n+2)*(3*n+5)/12
14 10 Induction : S(n) = (1 -4/1)*(1 - 4/9)*(1 - 4/25)*(1 - 4/49)*......
14 11 Induction : S(n) = (1 + 1)*(1 + 1/2)*(1 + 1/3)*.....*(1 + 1/n) = n + 1
14 12 Induction : S(n) = (1^2)/(1*3) + (2^2)/(3*5) + .... = (n*(n+1))/(2*(2*n+1))
14 13 Induction : S(n) = 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2. Is it true
14 14 Induction : S(n) = n^2 + n + 41. Is it always a prime number ?
14 17 Induction : Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)
15 00 Inequality
15 02 Solve x^2 - 6*x + 8 < 0
15 08 Solve (x-1)/(x+1) > 1
15 09 Solve (x-1)/(x+1) > 2
Inverse
06 08 Inverse of y = e^x
09 12 Inverse of hyperbolic functions
04 03 Inverse of linear functions
09 03 Inverse of y = ln(x)
05 03 Inverse of quadratic functions
Go to Begin
Q10. J
Go to Begin
Q11. K
Go to Begin
Q12. L
Linear equations
AP 04 11 : Sketch y = Abs(x - 1) + Abs(x + 1)
AL 04 12 : Solve Abs(x - 1) + Abs(x + 1) = 3
09 02 Logarithmic laws
Go to Begin
Q13. M
AL 03 04 Magic number patterns
AL 03 05 Matrix pattern : Find row number and column number of 100
1, 03, 06, 10, 15, 21, ...
2, 05, 09, 14, 20, .......
4, 08, 13, 19, ...........
7, 12, 18, ...............
AL 03 10 : Multiple of 49 whose digits are same.
Go to Begin
Q14. N
17 12 Normal distribution : N(z LT a)
Numbers
03 11 : Amicable number pairs 220 and n, find n.
03 05 : Numbers arranged in matrix. 1st row sequence 1,3,6,10, ...
03 12 : Perfect numbers - Find 3rd perfect number
03 03 : Properties based on factors of number.
14 15 : Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
14 16 : Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6
07 01 n! : definition and trailor zeros in n!
Go to Begin
Q15. O
Go to Begin
Q16. P
05 04 Parabola : Locus, Focus and directrix
08 05 Pascal triangle : Sequence and series
03 12 Perfect number : How to find the third perfect number ?
03 07 Perfect square numbers.
17 01 Permutation : P(n,r)
17 02 Take r from N symbols for arrangement without duplicate : P(n,r)
17 02 Take r from N symbols for arrangement with duplicate : n^r
08 13 Pi in series
21 00 Polynomial equation
21 11 Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
Go to Begin
Q17. Q
11 04 Quaint equation
21 01 Quaint equation : Graphic solution
12 06 Quartic equation : (x-p)*(x-q)*(x-r)*(x-s) = t
11 03 Quartic equation : (x-5)*(x-7)*(x+4)*(x+6) = 504
21 01 Quartic function : y = a*x^4 + b*x^3 + ....
21 01 Quartic function : y = (x-p)*(x-q)*(x-r)*(x-s) - t
11 01 Quadratic equations
11 10 Quadratic equations : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
05 01 Quadratic functions : Defintion and application
05 02 Quadratic functions : With absolute operation
05 03 Quadratic functions : Inverse
05 04 Quadratic functions : Parabola
Go to Begin
Q18. R
Rational function
AL 16 01 : y = 1/(x + 1)
AL 16 02 : y = 1/(x^2 - 1)
AL 16 03 : y = 1/(x^3 -2*x - x + 2)
AL 16 06 : y = x + 4/(x^2)
AL 16 04 : y = (x^2 -2*x + 1)/(x)
AL 16 05 : y = ((x - 1)^3)/(2*x)
AL 27 05 : y = (x^2 + x - 12)/(x^2 -4)
03 01 Real number system
01 04 Remainder theory
Go to Begin
Q19. S
27 01 Sequence : 1,3,7,13,21,....
07 04 Sequence in Pascal triangle.
T(1)
T(n)
T(n*(n+1)/2!)
T(n*(n+1)*(n+2)/3!)
T(n*(n+1)*(n+2)*(n+3)/4!)
08 01 Series : A.P.
08 02 Series : G.P.
08 13 Series : pi
Series
AL 08 03 Series : Sum[n^2] = n*(n+1)*(2*n+1)/6.
AL 08 04 Series : Sum[n^3] = (n*(n+1)/2)^2.
AL 07 08 Series : Sum[n^4] = ?
Series : Series and sequence in Pascal triangle.
AL 08 05 : Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
AL 08 06 : Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
AL 08 07 : Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
Series and sequence in Pascal triangle.
AL 08 05 : Sum[C(n+1),2)] = C(n+2,3)
AL 08 06 : Sum[C(n+2),3)] = C(n+3,4)
AL 08 07 : Sum[C(n+3),4)] = C(n+4,5)
AL 08 06 Series : Special
S(n) = 1/(1*2) + 1/(2*3) + 1/(3*4) + ........ + 1/((n-1)*n) = ?.
S(n) = 1/(1*2*3) + 1/(2*3*4) + ... + 1/((n*(n+1)*(n+2)) = ?
S(n) = 1/3 + 1/15 + 1/35 + ...... + 1/((2*n-1)*(2*n+1)) = ?
08 08 Series : 1^3 + 3^3 + 5^3 + ..... (2*n-1)^3 = ?
08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + ..... n*((n+1)^2) = ?
08 07 Series : S(n) = 1 - 2 + 3 - 4 + 5 - 6 + ....... - n if n is even
08 08 Series : 1^3 + 3^3 + 5^3 + .... = ?
08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + .... = ?
08 10 Series : 1^3 + 2^3 + ... + n^3 GT (n^4)/4 GT 1^3 + 2^3 + ... +(n-1)^3
08 11 Series : (1-1/4)*(1-1/9)*(1-1/16)*....*(1-1/((n+1)^2 = (n+1)/2*n. n GT 1
08 12 Series : 1 - 2 + 3 - 4 + ...... + n and n is odd
11 10 Simultaneous equations
x + y = 3 (line)
x*y = 2 (Hyperbola)
11 10 Simultaneous equations
x - y = 1
x*y = 2 (Hyperbola)
11 10 Simultaneous equations
x^2 + y^2 = 4 (Circle)
x*y = 1 (Hyperbola)
16 06 Slant asymptote in y = x + 4/(x^2)
03 07 Square free numbers.
03 08 Square root : How to find Sqr(3) ?
Go to Begin
Q20. T
Go to Begin
Q21. U
Go to Begin
Q22. V
05 05 Vertex of quadratic function
16 06 Vertical asymptote in y = x + 4/(x^2)
Go to Begin
Q23. W
Go to Begin
Q24. X
11 17 : x^4 + b*x^3 + c*x^2 + d*x + e = 0 has roots 1,2,3,4
11 18 : x^4 - 10*x^3 + 35*x^2 - 50*x + 24 = 0 has roots 1,2. Find others
21 11 : x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
11 10 : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
18 10 : x^4 - x^3 + x^2 - x + 1 = 0
18 09 : x^4 + x^3 + x^2 + x + 1 = 0
18 04 : x^5 - 1 = 0
18 07 : x^5 + 1 = 0
21 11 : x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
Go to Begin
Q25. Y
AL 16 01 : y = 1/(x + 1)
AL 16 02 : y = 1/(x^2 - 1)
AL 16 03 : y = 1/(x^3 -2*x - x + 2)
AL 16 06 : y = x + 4/(x^2)
AL 16 04 : y = (x^2 -2*x + 1)/(x)
AL 16 05 : y = ((x - 1)^3)/(2*x)
AL 27 05 : y = (x^2 + x - 12)/(x^2 -4)
AL 27 06 : y = x + 1/x
AL 27 07 : y = x^2 + 1/x
AL 27 08 : y = x + 4/(x^2)
AL 27 02 : y = (x^2)/((x^2-1)^2)
Go to Begin
Q26. Z
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.