Mathematics Dictionary
Dr. K. G. Shih
Conic Section : Ellipse
Questions
Symbol Definition
Example : x^2 = square of x
Q01 |
- Quiz about ellipse
Q02 |
- Answer to Quiz
Answers
Q01. Quiz in ellipse
1. Find the locus of the following equations :
a. (x-2)^2/5^2 + (y+3)^2/3^2 = 1.
b. 9*x^2 + 25*y^2 + 54*x + 100*y + 181 = 0
c. 9*x^2 + 25*y^2 + 54*x + 100*y - 44 = 0
d. 9*x^2 + 25*y^2 + 54*x + 100*y + 200 = 0
e. 9*x^2 + 20*x*y + 25*y^2 + 18*x + 100*y - 200 = 0
2. Compare (x-2)^2/5^2 + (y+3)^2/3^2 = 1 with (x-2)^2/3^2 + (y+3)^2/4^2 = 1.
a. Principal axis.
b. Focal length f.
c. Coordinate of Foci.
d. Vertice on principal axis
e. Polar form
f. Equation of directrix = 0
Go to Begin
Q02. Answer to Quiz in ellipse
1. Find the locus of the following equations :
a. (x-2)^2/5^2 + (y+3)^2/3^2 = 1.
It is an ellipse.
Principal axis y = -3.
b. 9*x^2 + 25*y^2 + 54*x + 100*y + 181 = 0
9*(x+3)^2 - 81 + 25*(y+4)^2 -100 + 181 = 0.
9*(x+3)^2 + 25*(y+2)^2 = 0.
It is a point.
Principal axis y = -3.
c. 9*x^2 + 25*y^2 + 54*x + 100*y - 116 = 0
9*(x+3)^2 - 81 + 25*(y+4)^2 - 100 - 44 = 0.
9*(x+3)^2 + 25*(y+2)^2 = 225.
(x+3)^2/25 + (y+2)^2/9 = 1
It is an ellipse.
Principal axis y = -2.
d. 9*x^2 + 25*y^2 + 18*x + 100*y + 200 = 0
9*(x+3)^2 - 81 + 25*(y+4)^2 - 100 + 200 = 0.
9*(x+3)^2 + 25*(y+2)^2 = -19.
No locus in real number system.
e. 9*x^2 + 20*x*y + 25*y^2 + 18*x + 100*y - 200 = 0
Since B^2 - 4*A*C = 20^2 - 4*9*25 = -500
Hence it is an ellipse.
Or a point.
Or no locus in real system.
2. Compare (x-2)^2/5^2 + (y+3)^2/3^2 = 1 with (x-2)^2/3^2 + (y+3)^2/4^2 = 1.
a. Principal axis.
b. Focal length f.
c. Coordinate of Foci.
d. Vertice on principal axis
e. Polar form
f. Equation of directrix = 0
For (x-2)^2/5^2 + (y+3)^2/3^2 = 1.
Principal axis is y = - 3.
Focal length f = Sqr(a^2-b^2) = 4.
Center is at (2,-3).
Coordinate of foci are (-2,-3) and (6,-3).
Coordinate of vertice are (-3,-3) and (7,-3).
Polar form : R = D*e/(1-e*cos(A)) or R = D*e/(1+e*cos(A)).
Equation of directrix
Since e = f/a = 4/5 = 0.8.
R = a - f = D*e/(1+e) when A = 180 degrees.
Hence D*e = (a-f)*(1+e) = (5-4)*(1+0.8) = 1.8
Hence D = 1.8/e = 2.25.
Equation of directrix at x = -3 - 2.25 = - 5.25 for focus (-3,-3).
Equation of directrix at x = 7 + 2.25 = 9.25 for focus (7,-3).
For (x-2)^2/3^2 + (y+3)^2/5^2 = 1.
Principal axis is x = 2.
Focal length f = Sqr(a^2-b^2) = 4.
Center is at (2,-3).
Coordinate of foci are (2,-7) and (2,1).
Coordinate of vertice are (2,-8) and (2,2).
Polar form : R = D*e/(1-e*sin(A)) or R = D*e/(1+e*sin(A)).
Equation of directrix
Since e = f/a = 4/5 = 0.8.
R = a - f = D*e/(1+e) when A = 270 degrees.
Hence D*e = (a-f)*(1+e) = (5-4)*(1+0.8) = 1.8
Hence D = 1.8/e = 2.25.
Equation of directrix at y = -7 - 2.25 = - 9.25 for focus (2,-7).
Equation of directrix at x = 1 + 2.25 = 3.25 for focus (2,1).
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.