Mathematics Dictionary
Dr. K. G. Shih
Graphs of R = a + b*F(p*A/q)^M
Subjects
Symbol Defintion
Example : x^2 measn square of x
AN 10 01 |
- Sketch graphs of R = a + b*sin(p*A/q)^M
AN 10 02 |
- Sketch graphs of R = a + b*sin(p*A/q)^M
AN 10 03 |
- Patterns
AN 10 04 |
- Petals of R = cos(2*A)
AN 10 05 |
- Petals of R = cos(3*A)
AN 10 06 |
- Petals of R = sin(3*A/2)
AN 10 07 |
- Petals of R = cos(3*A/2)
AN 10 08 |
- Twin patterns of R = sin(p*A/q) and R = cos(p*A/q)
AN 10 09 |
-
AN 10 10 |
-
Answers
AN 10 01. Sketch graphs of R = a + b*sin(p*A/q)^M
Sketch
Graphs in Analytic geometry
Section 10 in anlytic geometry
Examples
10 01 Graph of R = 1 + 1*sin(11*A/4)^3
Select section 10 in upper box
Select program 01 in lower box
Give a,b,p,q,and M : 1,1,11,4,3
Go to Begin
AN 10 02. Graphs of R = a + b*cos(p*A/q)^M
Sketch
Graphs in Analytic geometry
Section 10 in anlytic geometry
Examples
10 02 Graph of R = 1 + 1*cos(11*A/4)^3
Select section 10 in upper box
Select program 02 in lower box
Give a,b,p,q,and M : 1,1,11,4,3
Question : What is the difference of R=1+1*sin(11*A/4)^3 and R=1+1*sin(11*A/4)^3 ?
Go to Begin
AN 10 03. Patterns
Demo Patterns
Patterns
Topics
1. Introduction
2. Patterns of R = sin(p*A/q)^M
Go to Begin
AN 10 04. Petals of R = cos(2*A)
Find direction of petals
Number 3*A ...... Angle A ... Value R ... Plot angle ... (Direction of Petal)
1 .... 000 ...... 000 ....... +1 ........ 000
2 .... 180 ...... 090 ....... -1 ........ 270 .......... (090 + 180) = 270
3 .... 360 ...... 180 ....... +1 ........ 180
4 .... 540 ...... 270 ....... -1 ........ 090 .......... 270 + 180 - 360 = 90
5 .... 720 ...... 360 ....... +1 ........ 000
Find number of petals and domain
Since number 5 petal and number 1 petal have same direction
Hence it has 4 petals
The domain is 360 - 0 = 360
Hence A = (0, 360)
Compare the direction of petals of R = cos(2*A) and R = sin(2*A)
R = cos(2*A) 000 090 180 270 (TR 10 06)
R = sin(2*A) 045 135 225 315(TR 10 03)
Hence the petals have 45 degrees differenct
Go to Begin
AN 10 05. Petals of R = cos(3*A)
Find direction of petals
Number 3*A ...... Angle A ... Value R ... Plot angle ... (Direction of Petal)
1 .... 000 ...... 000 ....... +1 ........ 000
2 .... 180 ...... 060 ....... -1 ........ 240 .......... (060 + 180) = 240
3 .... 360 ...... 120 ....... +1 ........ 120
4 .... 540 ...... 180 ....... -1 ........ 000 .......... 180 + 180 - 360 = 0
Find number of petals and domain
Since number 4 petal and number 1 petal have same direction
Hence it has 3 petals
The domain is 180 - 00 = 180
Hence A = (0, 180)
Compare the direction of petals of R = cos(3*A) and R = sin(3*A)
R = cos(3*A) 000 120 240 (TR 10 05)
R = sin(3*A) 030 150 270 (TR 10 03)
Hence the petals have 30 degrees differenct
Go to Begin
AN 10 06. Petals of R = sin(3*A/2)
Find direction of petals
Number 3*A/2 .... Angle A ... Value R ... Plot angle ... (Direction of Petal)
1 .... 090 ...... 060 ....... +1 ........ 060
2 .... 270 ...... 180 ....... -1 ........ 000 .......... (180 + 180) = 260
3 .... 450 ...... 300 ....... +1 ........ 300
4 .... 630 ...... 420 ....... -1 ........ 240 .......... 420 + 180 - 360 = 240
5 .... 810 ...... 540 ....... +1 ........ 180 .......... 540 - 360 = 180
6 .... 990 ...... 660 ....... -1 ........ 120 .......... 660 + 180 - 720 = 120
7 ... 1170 ...... 780 ....... +1 ........ 060 .......... 780 - 720 = 060
Find number of petals and domain
Since number 7 petal and number 1 petal have same direction
Hence it has 6 petals
The domain is 780 - 60 = 720
Hence A = (0, 720)
Go to Begin
AN 10 07. Petals of R = cos(3*A/2)
Find direction of petals
Number 3*A/2 .... Angle A ... Value R ... Plot angle ... (Direction of Petal)
1 .... 000 ...... 000 ....... +1 ........ 000
2 .... 180 ...... 120 ....... -1 ........ 300 .......... (120 + 180) = 300
3 .... 360 ...... 240 ....... +1 ........ 240
4 .... 540 ...... 360 ....... -1 ........ 180 .......... 360 + 180 - 360 = 180
5 .... 720 ...... 480 ....... +1 ........ 300 .......... 480 + 180 - 360 = 300
6 .... 900 ...... 600 ....... -1 ........ 060 .......... 600 + 180 - 720 = 060
7 ... 1080 ...... 720 ....... +1 ........ 000 .......... 720 - 720 = 000
Find number of petals and domain
Since number 7 petal and number 1 petal have same direction
Hence it has 6 petals
The domain is 720 - 0 = 720
Hence A = (0, 720)
Compare petal direction of R = sin(3*A/2) and R = cos(3*A/2)
Comparison
R = cos(3*A/2) 000 060 120 180 240 300 (TR 10 07)
R = sin(3*A/2) 000 060 120 180 240 300 (TR 10 06)
Conclusion
From AN 10 06 and AN 10 07
We see that all the directions of R = cos(3*A/2) are same as R = sin(3*A/2)
From the final diagram, we can not distinguish the graphs
They are congruent with same direction
We then define it as twin patterns (See Pattern Mathematics by Dr. shih)
Go to Begin
AN 10 08. Twin patterns of R = sin(p*A/q) and R = cos(p*A/q)
Definition of twin patterns
Graphs of R = sin(p*A/q) and R = cos(p*A/q) are congruent
Also they have same direction (No phase difference)
Conditions
The value of p is odd
The value of q is even
The cycle domain is A = 0 to 2*q*pi
Examples
See AN 10 06 and AN 10 07
Sketch diagrams
Graphs in Analytic geometry
Section 21 10
Use 21 10 to enter the program
Example 1 : Sketch R = sin(3*A/2)^1
Click Menu
Click 10 in upper box
Click 01 in lower box
Give data of R = a + b*sin(p*A/q)^M : 0,1,3,2,1
Example 2 : Sketch R = cos(3*A/2)^1
Click Menu
Click 10 in upper box
Click 02 in lower box
Give data of R = a + b*sin(p*A/q)^M : 0,1,3,2,1
Demo diagrams
Pattern Mathematics
Section 16 01
Click start
Click 16 in upper box
Click 01 in lower box
Give data : 2,1
Reference
Pattern Mathematics published by Dr. K. G. Shih
Go to Begin
AN 10 09. Answer
Go to Begin
AN 10 10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.