Counter
Mathematics Dictionary
Dr. K. G. Shih

Graphs of R = a + b*F(p*A/q)^M
Subjects


  • AN 10 01 | - Sketch graphs of R = a + b*sin(p*A/q)^M
  • AN 10 02 | - Sketch graphs of R = a + b*sin(p*A/q)^M
  • AN 10 03 | - Patterns
  • AN 10 04 | - Petals of R = cos(2*A)
  • AN 10 05 | - Petals of R = cos(3*A)
  • AN 10 06 | - Petals of R = sin(3*A/2)
  • AN 10 07 | - Petals of R = cos(3*A/2)
  • AN 10 08 | - Twin patterns of R = sin(p*A/q) and R = cos(p*A/q)
  • AN 10 09 | -
  • AN 10 10 | -

  • Answers


    AN 10 01. Sketch graphs of R = a + b*sin(p*A/q)^M

    Sketch
    • Graphs in Analytic geometry Section 10 in anlytic geometry
    • Examples
      • 10 01 Graph of R = 1 + 1*sin(11*A/4)^3
      • Select section 10 in upper box
      • Select program 01 in lower box
      • Give a,b,p,q,and M : 1,1,11,4,3

    Go to Begin

    AN 10 02. Graphs of R = a + b*cos(p*A/q)^M

    Sketch
    • Graphs in Analytic geometry Section 10 in anlytic geometry
    • Examples
      • 10 02 Graph of R = 1 + 1*cos(11*A/4)^3
      • Select section 10 in upper box
      • Select program 02 in lower box
      • Give a,b,p,q,and M : 1,1,11,4,3
    • Question : What is the difference of R=1+1*sin(11*A/4)^3 and R=1+1*sin(11*A/4)^3 ?

    Go to Begin

    AN 10 03. Patterns
    Demo Patterns
    Topics
    • 1. Introduction
    • 2. Patterns of R = sin(p*A/q)^M

    Go to Begin

    AN 10 04. Petals of R = cos(2*A)

    Find direction of petals
    • Number 3*A ...... Angle A ... Value R ... Plot angle ... (Direction of Petal)
    • 1 .... 000 ...... 000 ....... +1 ........ 000
    • 2 .... 180 ...... 090 ....... -1 ........ 270 .......... (090 + 180) = 270
    • 3 .... 360 ...... 180 ....... +1 ........ 180
    • 4 .... 540 ...... 270 ....... -1 ........ 090 .......... 270 + 180 - 360 = 90
    • 5 .... 720 ...... 360 ....... +1 ........ 000
    Find number of petals and domain
    • Since number 5 petal and number 1 petal have same direction
    • Hence it has 4 petals
    • The domain is 360 - 0 = 360
    • Hence A = (0, 360)
    Compare the direction of petals of R = cos(2*A) and R = sin(2*A)
    • R = cos(2*A) 000 090 180 270 (TR 10 06)
    • R = sin(2*A) 045 135 225 315(TR 10 03)
    • Hence the petals have 45 degrees differenct

    Go to Begin

    AN 10 05. Petals of R = cos(3*A)

    Find direction of petals
    • Number 3*A ...... Angle A ... Value R ... Plot angle ... (Direction of Petal)
    • 1 .... 000 ...... 000 ....... +1 ........ 000
    • 2 .... 180 ...... 060 ....... -1 ........ 240 .......... (060 + 180) = 240
    • 3 .... 360 ...... 120 ....... +1 ........ 120
    • 4 .... 540 ...... 180 ....... -1 ........ 000 .......... 180 + 180 - 360 = 0
    Find number of petals and domain
    • Since number 4 petal and number 1 petal have same direction
    • Hence it has 3 petals
    • The domain is 180 - 00 = 180
    • Hence A = (0, 180)
    Compare the direction of petals of R = cos(3*A) and R = sin(3*A)
    • R = cos(3*A) 000 120 240 (TR 10 05)
    • R = sin(3*A) 030 150 270 (TR 10 03)
    • Hence the petals have 30 degrees differenct

    Go to Begin

    AN 10 06. Petals of R = sin(3*A/2)

    Find direction of petals
    • Number 3*A/2 .... Angle A ... Value R ... Plot angle ... (Direction of Petal)
    • 1 .... 090 ...... 060 ....... +1 ........ 060
    • 2 .... 270 ...... 180 ....... -1 ........ 000 .......... (180 + 180) = 260
    • 3 .... 450 ...... 300 ....... +1 ........ 300
    • 4 .... 630 ...... 420 ....... -1 ........ 240 .......... 420 + 180 - 360 = 240
    • 5 .... 810 ...... 540 ....... +1 ........ 180 .......... 540 - 360 = 180
    • 6 .... 990 ...... 660 ....... -1 ........ 120 .......... 660 + 180 - 720 = 120
    • 7 ... 1170 ...... 780 ....... +1 ........ 060 .......... 780 - 720 = 060
    Find number of petals and domain
    • Since number 7 petal and number 1 petal have same direction
    • Hence it has 6 petals
    • The domain is 780 - 60 = 720
    • Hence A = (0, 720)

    Go to Begin

    AN 10 07. Petals of R = cos(3*A/2)


    Find direction of petals
    • Number 3*A/2 .... Angle A ... Value R ... Plot angle ... (Direction of Petal)
    • 1 .... 000 ...... 000 ....... +1 ........ 000
    • 2 .... 180 ...... 120 ....... -1 ........ 300 .......... (120 + 180) = 300
    • 3 .... 360 ...... 240 ....... +1 ........ 240
    • 4 .... 540 ...... 360 ....... -1 ........ 180 .......... 360 + 180 - 360 = 180
    • 5 .... 720 ...... 480 ....... +1 ........ 300 .......... 480 + 180 - 360 = 300
    • 6 .... 900 ...... 600 ....... -1 ........ 060 .......... 600 + 180 - 720 = 060
    • 7 ... 1080 ...... 720 ....... +1 ........ 000 .......... 720 - 720 = 000
    Find number of petals and domain
    • Since number 7 petal and number 1 petal have same direction
    • Hence it has 6 petals
    • The domain is 720 - 0 = 720
    • Hence A = (0, 720)
    Compare petal direction of R = sin(3*A/2) and R = cos(3*A/2)
    • Comparison
      • R = cos(3*A/2) 000 060 120 180 240 300 (TR 10 07)
      • R = sin(3*A/2) 000 060 120 180 240 300 (TR 10 06)
    • Conclusion
      • From AN 10 06 and AN 10 07
      • We see that all the directions of R = cos(3*A/2) are same as R = sin(3*A/2)
      • From the final diagram, we can not distinguish the graphs
      • They are congruent with same direction
      • We then define it as twin patterns (See Pattern Mathematics by Dr. shih)

    Go to Begin

    AN 10 08. Twin patterns of R = sin(p*A/q) and R = cos(p*A/q)

    Definition of twin patterns
    • Graphs of R = sin(p*A/q) and R = cos(p*A/q) are congruent
    • Also they have same direction (No phase difference)
    Conditions
    • The value of p is odd
    • The value of q is even
    • The cycle domain is A = 0 to 2*q*pi
    Examples
    • See AN 10 06 and AN 10 07
    Sketch diagrams
    • Graphs in Analytic geometry Section 21 10
    • Use 21 10 to enter the program
    • Example 1 : Sketch R = sin(3*A/2)^1
      • Click Menu
      • Click 10 in upper box
      • Click 01 in lower box
      • Give data of R = a + b*sin(p*A/q)^M : 0,1,3,2,1
    • Example 2 : Sketch R = cos(3*A/2)^1
      • Click Menu
      • Click 10 in upper box
      • Click 02 in lower box
      • Give data of R = a + b*sin(p*A/q)^M : 0,1,3,2,1
    Demo diagrams
    • Pattern Mathematics Section 16 01
    • Click start
    • Click 16 in upper box
    • Click 01 in lower box
    • Give data : 2,1
    Reference
    • Pattern Mathematics published by Dr. K. G. Shih

    Go to Begin

    AN 10 09. Answer


    Go to Begin

    AN 10 10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1