Counter
Mathematics Dictionary
Dr. K. G. Shih

Transformation and translation
Subjects


  • AN 14 00 | - Outlines
  • AN 14 01 | - Rotation matrix
  • AN 14 02 | - Convert x*y = 1 to standard hypebola form
  • AN 14 03 | - Convert (x + 1)*(y - 2) = 1 to standard hypebola form
  • AN 14 04 | - Elliminate x*y in F(x, y) = 0
  • AN 14 05 | - Rotate 45 degrees of x^2 - y^2 = 1
  • AN 14 06 | - Sketch F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
  • AN 14 07 | - Rotate graphs of functions in conic section
  • AN 14 08 | - Draw circum-circle of triangle ABC
  • AN 14 09 | - Draw in-circle of triangle ABC
  • AN 14 10 | - Draw ex-circle of triangle ABC

  • Answers


    AN 14 01. Rotation matrix

    Diagrams
    Rotation matrix
    • From oxy to uov by rotating angle A
      • | +cos(A) +sin(A) |
      • | -sin(A) +cos(A) |
    • Express u and v in terms of x and y
      • u = +x*cos(A) + y*sin(A)
      • v = -x*sin(A) + y*cos(A)

    Go to Begin

    AN 14 02. Convert x*y = 1 to standard hypebola form

    Method 1 : Rotating 45 degrees
    • u = +x*cos(45) + y*sin(45)
    • v = -x*sin(45) + y*cos(45)
    • Since cos(45) = sin(45) = Sqr(2)/2
    • Hence we have
      • u =(Sqr(2)/2)*(+x + y)
      • v =(Sqr(2)/2)*(-x + y)
    • Solve for x and y
      • x = (u - v)/(Sqr(2))
      • y = (u + v)/(Sqr(2))
    • Substitue x and y into x*y = 1, we have (u^2 - v^2) = -2
    • The hyperbola is (u/Sqr(2))^2 - (v/Sqr(2))^2 = -1
      • The principal axis is y = x
      • The semi-axis : a = Sqr(2) and b = Sqr(2)
      • The center : (0, 0)
      • The vertex : (-1, -1) and (1, 1) in oxy system
      • The vertex : (-Sqr(2), 0) and (+Sqr(2), 0) in ouv system
      • The focal length is f = Sqr(a^2 + b^2) = 2
    Method 2 : By diagram
    • We know that it is hyperbola because B^2 - 4*A*C = (1) - 4*0*0 = 1
    • From diagram we know the principal axis is y = x
    • From diagram we know the center to vertex (-1, -1) or (1, 1) is Sqr(2)
    • Hence the semi-axis : a = Sqr(2) and b = Sqr(2)
    • Let y = x be the ou of the ouv system
    • Then the equation is according to rotating angle
      • (u/Sqr(2))^2 - v/Sqr(2))^2 = +1
      • (u/Sqr(2))^2 - v/Sqr(2))^2 = -1
    Questions : From AN 08
    • Find the coordinate of foci
    • Find the equation of directrix

    Go to Begin

    AN 14 03. Convert (x + 1)*(y - 2) = 1 to standard hyperbola form
    Method
    • Use translation to change above equation to x*y = 1
    • Use AN 14 02, to get the standard form (u/a)^2 - (v/b)^2 = 1
    • Change it as ((u - h)/a)^2 - ((v - k)/b)^2 = 1 by translation
    • Where h = -1 and k = +2

    Go to Begin

    AN 14 04. Eliminate x*y in conic section

    F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
    • Question
      • Eliminate x*y term by rotating an angle
      • The angle is tan(Ang) = (A - C)/B
    • After rotation : F(,u,v) = P*u^2 + Q*u*v + R*v^2 +S*u + T*v + W = 0
      • Rotation : u = x*cos(Ang) + y*sin(Ang) and v = -x*sin(Ang) + y*cos(Ang)
      • Substitute rotation formula into F(x,y) = 0 and simplify we have
        • P = A * Cos(ANG) ^ 2 + C * Sin(ANG) ^ 2 + B * Cos(ANG) * Sin(ANG)
        • Q = 2*(C - A)*cos(Ang)*sin(Ang) + B*(cos(Ang)^2 - sin(ANg)^2)
        • R = A * Sin(ANG) ^ 2 + C * Cos(ANG) ^ 2 - B * Cos(ANG) * Sin(ANG)
        • S = D * Cos(ANG) + E * Sin(ANG)
        • T = -D * Sin(ANG) + E * Cos(ANG)
        • W = F
    • To elliminate x*y term means Q = 0 in F(u, v)
      • Hence 2*(A - C)*cos(Ang)*sin(Ang) = B*(cos(Ang)^2 - sin(Ang)^2)
      • Hence (A - C)*sin(2*Ang) = B*cos(2*Ang)
      • Hence tan(2*Ang) = (B)/(A - C)
    • or Ang = 0.5*arctan(B/(A - C))
    Example : Rotate 45 degrees of x*y = 1
    • A = 0, B = 1, C = 0, D = 0, E = 0, F = -1
    • Hence tan(2*Ang) = (B)/(A - C) = infinite and Ang = pi/2
    • Hence Ang = 45 degrees
    • P = +B*cos(ang)*sin(Ang) = 1/2
    • R = -B*cos(ANg)*sin(Ang) = -1/2
    • S = 0 and T = 0
    • W = -1
    • After rotating 45 degree, the new equation (u^2)/2 - (v^2)/2 - 1 = 0
    • Standard hyperbola form is (u/Sqr(2))^2 - (v/Sqr(2))^2 = 1
    Computer method

    Go to Begin

    AN 14 05. Rotate 45 degrees of x^2 - y^2 = 1

    • u = Sqr(2)*(x + y)/2
    • v = Sqr(2)*(-x + y)/2
    • Hence x = Sqr(2)*(u - v)/2
    • Hence y = Sqr(2)*(u + v)/2
    • Substitute x and y into x^2 - y^2 = 1
    • ((u - v)^2)/2 - ((u + v)^2)/2 = 1
    • Simplify we have u*v = -1/2
    Computer method

    Go to Begin

    AN 14 06. Sketch F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0

    Method
    • 1. Eliminate x*y term by rotating angle ang = 0.5*arctan(B/(A-C))
    • 2. Use new coefficients and completing square to get standard form
    • 3. Use standard form to plot in oxy system
    • 3. Rotate the plot by angle ang = 0.5*arctan(B/(A-C))

    Go to Begin

    AN 14 07. Rotate the graphs of functions of conic sections

    Computer method

    Go to Begin

    AN 14 08. Draw circum-circle of triangle ABC

    Case 1
    • If we know the radius and center is related to one side
    • This side is x-axis, we can sketch the circle
    Case 2
    • If no side is along x-axis, the center and radius are related with one side
    • To plot the circle, we have to use rotating techniques
    • Example : Circom-center and radius are related with angle A of triangle
      • Radius : R = a/(2*sin(A))
      • Center I to side AB is IF = Sqr(R^2 - (AB/2)^2)
      • Hence center related to AB is (AB/2, IF)
      • If AB is x-axis, we can use coodinate of center and radius to draw circle
      • If AB makes angle Z with x-axis, how to draw on computer ?
      • We use rotation technique
    • Rotation angle U
      • Let cneter be (h,k) in oxy system
      • Let center be (u,v) in ouv system after rotating U
        • u = +h*cos(U) + k*sin(U)
        • v = -h*sin(U) + k*cos(U)
      • Now we can use center (u,v) and radius R to draw the circle
      • The circle will pass the three vertices of triangle ABC.

    Go to Begin

    AN 14 09. Draw in-circle of triangle ABC

    Center and radius related angle A and side AB
    • Tanget from A to in-circle is (s - a) where s = (a+b+c)/2
    • Radius : r = (s-a)*tan(A/2)
    • Hence center is h = (s-a) and k = r
    • If AB makes angle U with x-axis,
    • The center should be changed as
      • u = +h*cos(U) + k*sin(U)
      • v = -h*sin(U) + k*cos(U)
    • Now we can use (u,v) as center to draw the circle
    • The three sides of triangle ABC will tangent the in-circle

    Go to Begin

    AN 14 10. Draw ex-circle of triangle ABC

    Center and radius related angle A and side AB
    • Tanget from A to in-circle is s where s = (a+b+c)/2
    • Radius : r = s*tan(A/2)
    • Hence center is h = s and k = r
    • If AB makes angle U with x-axis,
    • The center should be changed as
      • u = +h*cos(U) + k*sin(U)
      • v = -h*sin(U) + k*cos(U)
    • Now we can use (u,v) as center to draw the circle
    • The three sides of triangle ABC will tangent the ex-circle

    Go to Begin

    AN 14 00. Outlines

    Rotation matrix
    • From oxy to uov by rotating angle
      • | +cos(A) +sin(A) |
      • | -sin(A) +cos(A) |
    • Express u and v in terms of x and y
      • u = +x*cos(A) + y*sin(A)
      • v = -x*sin(A) + y*cos(A)
    Elliminate x*y in F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
    • Change F(x,y) to F(u,v) by totating
    • After rotation : F(,u,v) = P*u^2 + Q*u*v + R*v^2 +S*u + T*v + W = 0
      • P = A * Cos(ANG) ^ 2 + C * Sin(ANG) ^ 2 + B * Cos(ANG) * Sin(ANG)
      • Q = 2*(C - A)*cos(Ang)*sin(Ang) + B*(cos(Ang)^2 - sin(ANg)^2)
      • R = A * Sin(ANG) ^ 2 + C * Cos(ANG) ^ 2 - B * Cos(ANG) * Sin(ANG)
      • S = D * Cos(ANG) + E * Sin(ANG)
      • T = -D * Sin(ANG) + E * Cos(ANG)
      • W = F
    • To elliminate x*y term means Q = 0 in F(u, v)
      • Hence 2*(A - C)*cos(Ang)*sin(Ang) = B*(cos(Ang)^2 - sin(Ang)^2)
      • Hence (A - C)*sin(2*Ang) = B*cos(2*Ang)
      • Hence tan(2*Ang) = (B)/(A - C) or Ang = 0.5*arctan(B/(A - C))
    • The principal axis is Ou or y = s*x where s = tan(Ang)
    Function y = 1/x is hyperbola
    • Since x*y = 1 is hyperbola
    • Rotate 45 degrees of x*y = 1, it becomes (x/a)^2 - (y/b)^2 = 1
    Graphs of x*y in F(x,y) = A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
    • If A = C and B = 0, it is a circle
    • If B^2 - 4*A*C = 0, it is a parabola
    • If B^2 - 4*A*C LT 0, it is an ellipse
    • If B^2 - 4*A*C GT 0, it is a hyperbola

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1