Mathematics Dictionary
Dr. K. G. Shih
Analytic geometry Index
Symbol Defintion
...... Example : x^2 = square of x
Keywords
.............. Find given keyword by numbers
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
|
X
|
Y
|
Z
|
Keywords
Q01. A
02 04 Angle between two lines
02 04 Angle between two lines
Asymptote : See diagrams in Alge.exe and GC.exe
Go to Begin
Q02. B
16 00 Binomial theory : Express function in series
Go to Begin
Q03. C
05 01 Circle : Defintion and equation
05 14 Circle : Three point define a circle
02 11 Circum-center
02 07 Centroid : Medians of triangle meet at one point
11 00 Coordinate geometry
04 06 cos(x) and cosh(x) : comparison
Go to Begin
Q04. D
09 01 DeMoivre's theory : Definition
09 02 DeMoivre's theory : Solve X^5 - 1 = 0
09 03 DeMoivre's theory : Solve X^5 - 1 = 0
06 12 Directrix of parabola
02 06 Distance between two parallel lines
02 05 Distance from point P(u,v) to a line A*x + B*y + C = 0
18 03 Divergent series S(n) = 0 + 0 + 0 + .... = 1
Go to Begin
Q05. E
07 00 Ellipse : Defintion and equations
07 01 Ellipse : Locus
27 03 Ellipse : Convert (x/5)^2 + (y/3)^2 = 1 to polar form
27 04 Ellipse : Convert R = 1.8/(1 - 0.8*cos(A)) to rectangular form
02 01 Equations of line
16 06 Exponent : Lim[(1 + 1/x)^x] = e when x goes to infinite
16 06 Exponent : Lim[(1 + x)^(1/x)] = e when x goest to 0
11 00 Ex-central triangle : Ex-center
Go to Begin
Q06. F
06 11 Focus of parabola
Go to Begin
Q07. G
Go to Begin
Q08. H
18 04 Harmonic Series : Sum[1/n] is divergent
02 08 Heights of triangle meet at one point which is ortho-center
08 00 Hyperbola : Definition and equations
15 02 Hyperbola : Graph of x = tan(t) and y = sec(t)
15 03 Hyperbola : Graph of x = sec(t) and y = tan(t)
21 03 Hyperbolic functions : Diagram e.g. graph of y = sinh(x)
04 01 Hyperbolic functions : Definitions of six functions e.g. y = sinh(x)
04 06 Hyperbolic functions : compare cos(x) and cosh(x)
04 05 Hyperbolic functions : compare sin(x) and sinh(x)
04 04 Hyperbolic functions : Compare with graphs of trigonometric functions
04 05 Hyperbolic functions : Compare with identities of trigonometric functions
04 03 Hyperbolic functions : Relation with Inverse hyperbolic functions
Go to Begin
Q09. I
01 02 In-equality : Solve 3 GE (x - 2) LE 6
01 03 In-equality : graph Abs(x) = 2
02 03 Intersections of two lines
04 01 Inverse hyperbolic function : Defintions of six inverse functions
04 03 Inverse hyperbolic function : Relation with hyperbolic functions
Go to Begin
Q10. J
Go to Begin
Q11. K
Go to Begin
Q12. L
16 06 Limit : Lim[(1 + 1/x)^x] = e when x goest to infinite
16 06 Limit : Lim[(1 + x)^(1/x)] = e when x goest to 0
02 01 Line : Equations
Go to Begin
Q13. M
02 07 Medians : Medians of triangle meet at one point which is centroid
Go to Begin
Q14. N
01 01 Numbers
Go to Begin
Q15. O
02 08 Ortho-center : Heights of triangle meet at one point which is ortho-center
Go to Begin
Q16. P
06 16 Parabola : Convert polar form to rectangular form
06 14 Parabola : Convert rectangular form to polar form
06 00 Parabola : Defintion and equations
06 12 Parabola : Dirctrix (Equation)
06 11 Parabola : Focus (coordinate)
15 02 Parametric : Graph of x = tan(t) and y = sec(t)
15 03 Parametric : Graph of x = sec(t) and y = tan(t)
15 05 Parametric : Graph of x = sin(t) and y = sin(t)
15 06 Parametric : Graph of x = sin(t) and y = cos(t)
27 02 Pattern of R = 1 + 1*sin(11*A/4)^3
11 00 Pedal triangle
02 09 Pedal triangle
10 04 Petals of R = cos(2*A)
10 05 Petals of R = cos(3*A)
10 06 Petals of R = sin(3*A/2)
10 03 Petals of R = sin(2*A)
10 03 Petals of R = sin(3*A)
10 07 Petals of R = cos(3*A/2)
02 05 Point to a line
Go to Begin
Q17. Q
Go to Begin
*** R
14 01 Rotation : ellipse
14 02 Rotation : hyperbola
14 03 Rotation : parabola
10 03 R = sin(A) and y = sin(t) : Comparison
10 04 R = cos(2*A) : Petals
10 05 R = cos(3*A) : Petals
10 06 R = cos(3*A/2) : Petals
10 03 R = sin(2*A) : Petals
10 03 R = sin(3*A) : Petals
10 07 R = sin(3*A/2) : Petals
Go to Begin
*** S
04 06 sin(x) and sinh(x) : comparison
Go to Begin
Q20. T
12 01 Transformation matrix : Demo
12 02 Transformation matrix : Input data
12 03 Transformation : Circle
12 04 Transformation : ellipse
12 05 Transformation : parabola
12 01 Translation : circle
12 02 Translation : ellipse
12 03 Translation : hyperbola
12 04 Translation : parabola
11 10 Triangle : E,F,T on sides and triangle EFT
10 01 Trigonometry : R = a+b*sin(p*A/q)^M
10 02 Trigonometry : R = a+b*cos(p*A/q)^M
10 03 Trigonometry : R = a+b*tan(p*A/q)^M
03 01 Trigonometry : y = sin(n*A)^M
03 02 Trigonometry : y = cos(n*A)^M
03 03 Trigonometry : y = tan(n*A)^M
10 08 Twin patterns : R = sin(p*A/q)^M and R = cos(p*A/q)^M
Go to Begin
Q21. U
15 01 Unit circle : x = cos(t) and y = sin(t)
15 01 Unit hyperbola : x = sec(t) and y = tan(t)
15 01 Unit hyperbola : x = tan(t) and y = sec(t)
Go to Begin
Q22. V
Go to Begin
Q23. W
Go to Begin
Q24. X
Go to Begin
Q25. Y
27 01 y = 1/(2*x)
04 06 y = cos(x) and y = cosh(x) : comparison
04 05 y = sin(x) and y = sinh(x) : comparison
Go to Begin
Q26. Z
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.