Counter
Mathematics Dictionary
Dr. K. G. Shih

Analytic geometry Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
Q | R | S | T | U | V | W | X | Y | Z |
Keywords


Q01. A

  • 02 04 Angle between two lines
  • 02 04 Angle between two lines
  • Asymptote : See diagrams in Alge.exe and GC.exe

Go to Begin

Q02. B

  • 16 00 Binomial theory : Express function in series

Go to Begin

Q03. C

  • 05 01 Circle : Defintion and equation
  • 05 14 Circle : Three point define a circle
  • 02 11 Circum-center
  • 02 07 Centroid : Medians of triangle meet at one point
  • 11 00 Coordinate geometry
  • 04 06 cos(x) and cosh(x) : comparison

Go to Begin

Q04. D
  • 09 01 DeMoivre's theory : Definition
  • 09 02 DeMoivre's theory : Solve X^5 - 1 = 0
  • 09 03 DeMoivre's theory : Solve X^5 - 1 = 0
  • 06 12 Directrix of parabola
  • 02 06 Distance between two parallel lines
  • 02 05 Distance from point P(u,v) to a line A*x + B*y + C = 0
  • 18 03 Divergent series S(n) = 0 + 0 + 0 + .... = 1

Go to Begin

Q05. E
  • 07 00 Ellipse : Defintion and equations
  • 07 01 Ellipse : Locus
  • 27 03 Ellipse : Convert (x/5)^2 + (y/3)^2 = 1 to polar form
  • 27 04 Ellipse : Convert R = 1.8/(1 - 0.8*cos(A)) to rectangular form
  • 02 01 Equations of line
  • 16 06 Exponent : Lim[(1 + 1/x)^x] = e when x goes to infinite
  • 16 06 Exponent : Lim[(1 + x)^(1/x)] = e when x goest to 0
  • 11 00 Ex-central triangle : Ex-center

Go to Begin

Q06. F

  • 06 11 Focus of parabola

Go to Begin

Q07. G


Go to Begin

Q08. H
  • 18 04 Harmonic Series : Sum[1/n] is divergent
  • 02 08 Heights of triangle meet at one point which is ortho-center
  • 08 00 Hyperbola : Definition and equations
  • 15 02 Hyperbola : Graph of x = tan(t) and y = sec(t)
  • 15 03 Hyperbola : Graph of x = sec(t) and y = tan(t)
  • 21 03 Hyperbolic functions : Diagram e.g. graph of y = sinh(x)
  • 04 01 Hyperbolic functions : Definitions of six functions e.g. y = sinh(x)
  • 04 06 Hyperbolic functions : compare cos(x) and cosh(x)
  • 04 05 Hyperbolic functions : compare sin(x) and sinh(x)
  • 04 04 Hyperbolic functions : Compare with graphs of trigonometric functions
  • 04 05 Hyperbolic functions : Compare with identities of trigonometric functions
  • 04 03 Hyperbolic functions : Relation with Inverse hyperbolic functions

Go to Begin

Q09. I

  • 01 02 In-equality : Solve 3 GE (x - 2) LE 6
  • 01 03 In-equality : graph Abs(x) = 2
  • 02 03 Intersections of two lines
  • 04 01 Inverse hyperbolic function : Defintions of six inverse functions
  • 04 03 Inverse hyperbolic function : Relation with hyperbolic functions

Go to Begin

Q10. J


Go to Begin

Q11. K


Go to Begin

Q12. L

  • 16 06 Limit : Lim[(1 + 1/x)^x] = e when x goest to infinite
  • 16 06 Limit : Lim[(1 + x)^(1/x)] = e when x goest to 0
  • 02 01 Line : Equations

Go to Begin

Q13. M

  • 02 07 Medians : Medians of triangle meet at one point which is centroid

Go to Begin

Q14. N

  • 01 01 Numbers

Go to Begin

Q15. O

  • 02 08 Ortho-center : Heights of triangle meet at one point which is ortho-center

Go to Begin

Q16. P

  • 06 16 Parabola : Convert polar form to rectangular form
  • 06 14 Parabola : Convert rectangular form to polar form
  • 06 00 Parabola : Defintion and equations
  • 06 12 Parabola : Dirctrix (Equation)
  • 06 11 Parabola : Focus (coordinate)
  • 15 02 Parametric : Graph of x = tan(t) and y = sec(t)
  • 15 03 Parametric : Graph of x = sec(t) and y = tan(t)
  • 15 05 Parametric : Graph of x = sin(t) and y = sin(t)
  • 15 06 Parametric : Graph of x = sin(t) and y = cos(t)
  • 27 02 Pattern of R = 1 + 1*sin(11*A/4)^3
  • 11 00 Pedal triangle
  • 02 09 Pedal triangle
  • 10 04 Petals of R = cos(2*A)
  • 10 05 Petals of R = cos(3*A)
  • 10 06 Petals of R = sin(3*A/2)
  • 10 03 Petals of R = sin(2*A)
  • 10 03 Petals of R = sin(3*A)
  • 10 07 Petals of R = cos(3*A/2)
  • 02 05 Point to a line

Go to Begin

Q17. Q


Go to Begin

*** R

  • 14 01 Rotation : ellipse
  • 14 02 Rotation : hyperbola
  • 14 03 Rotation : parabola
  • 10 03 R = sin(A) and y = sin(t) : Comparison
  • 10 04 R = cos(2*A) : Petals
  • 10 05 R = cos(3*A) : Petals
  • 10 06 R = cos(3*A/2) : Petals
  • 10 03 R = sin(2*A) : Petals
  • 10 03 R = sin(3*A) : Petals
  • 10 07 R = sin(3*A/2) : Petals

Go to Begin

*** S

  • 04 06 sin(x) and sinh(x) : comparison
    Go to Begin

    Q20. T

    • 12 01 Transformation matrix : Demo
    • 12 02 Transformation matrix : Input data
    • 12 03 Transformation : Circle
    • 12 04 Transformation : ellipse
    • 12 05 Transformation : parabola
    • 12 01 Translation : circle
    • 12 02 Translation : ellipse
    • 12 03 Translation : hyperbola
    • 12 04 Translation : parabola
    • 11 10 Triangle : E,F,T on sides and triangle EFT
    • 10 01 Trigonometry : R = a+b*sin(p*A/q)^M
    • 10 02 Trigonometry : R = a+b*cos(p*A/q)^M
    • 10 03 Trigonometry : R = a+b*tan(p*A/q)^M
    • 03 01 Trigonometry : y = sin(n*A)^M
    • 03 02 Trigonometry : y = cos(n*A)^M
    • 03 03 Trigonometry : y = tan(n*A)^M
    • 10 08 Twin patterns : R = sin(p*A/q)^M and R = cos(p*A/q)^M

    Go to Begin

    Q21. U

    • 15 01 Unit circle : x = cos(t) and y = sin(t)
    • 15 01 Unit hyperbola : x = sec(t) and y = tan(t)
    • 15 01 Unit hyperbola : x = tan(t) and y = sec(t)

    Go to Begin

    Q22. V


  • Go to Begin

    Q23. W


    Go to Begin

    Q24. X


    Go to Begin

    Q25. Y

    • 27 01 y = 1/(2*x)
    • 04 06 y = cos(x) and y = cosh(x) : comparison
    • 04 05 y = sin(x) and y = sinh(x) : comparison

    Go to Begin

    Q26. Z


    Go to Begin

  • Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1