Mathematics Dictionary
Dr. K. G. Shih
Algebraic Formula
Symbol Defintion
........... Example : LT = less than, x^2 = square of x
Mathematics Dictionary
..... Ennter AL, AN, CA, GC, GE, PM, TR
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
|
X
|
Y
|
Z
|
Topics by Keywords
Q01. A
Amicable pairs 220 and 284
Sum of factors of 220 : 1 + 2 + 4 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284
Sum of factors of 284 : 1 + 2 + 4 + 71 + 142 = 220
Asymptote of y = F(x)
Horizontal asymptote : y = a when x goes to infinite
Vertical asymptote : x = a when y goes to infinite
Slant asymptote : y = a*x + b when x goes to infinite
Go to Begin
Q02. B
Go to Begin
Q03. C
Go to Begin
Q04. D
Go to Begin
Q05. E
Equation Theory of a*x^2 + b*x + c = 0
Roots are r and s
Sum of roots : r + s = -b/a
Product of roots : r*s = c/a
Equation Theory of a*x^3 + b*x^2 + c*x + d = 0
Roots are r s and t
Sum of roots : r + s + t = -b/a
Combination of two roots : r*s + r*t + s*t = c/a
Product of roots : r*s*t = -d/a
Coefficient of x : 1/r + 1/s + 1/t = c/(a*r*s*t)
Go to Begin
Q06. F
Factor theory : (x-a) is a factor of F(x) if F(a) = 0
Factors of expression
a^2 - b^2 = (a - b)*(a + b)
a^3 - b^3 = (a - b)*(a^2 + a*b + b^3)
a^3 + b^3 = (a + b)*(a^2 - a*b + b^3)
a^4 - b^4 = (a - b)*(a + b)*(a^2 + b^2)
x^5 - 1 = (x - 1)*(x^4 + x^3 + x^2 + x + 1)
x^5 + 1 = (x + 1)*(x^4 - x^3 + x^2 - x + 1)
Factorial
n! = n*(n-1)*(n-2)*....*3*2*1
Trailor zeros of n! : Int(n/5) + Int(n/25) + Int(n/125) + Int(n/625) + ...
Fibonacci's sequence
T(0) = 0 and T(1) = 1
T(n) = T(n-1) + T(n-2) and n GT 1
Sequence : 1, 1, 2, 3, 5, 8, 13, 21, ....
05 04 Focus of parabola
Go to Begin
Q07. G
08 02 Geometric series
Go to Begin
Q08. H
Hyperbolic functions
cosh(x) = ((e^x) + (e^(-x)))/2
sinh(x) = ((e^x) - (e^(-x)))/2
tanh(x) = sinh(x)/cosh(x)
Hyperbolic functions : Identities
cosh(x)^2 - sinh(x)^2 = 1
sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
cosh(x+y) = cosh(x)*cosh(y) + sinh(x)*sinh(y)
sinh(x-y) = sinh(x)*cosh(y) - cosh(x)*sinh(y)
cosh(x-y) = cosh(x)*cosh(y) - sinh(x)*sinh(y)
sinh(2*x) = 2*sinh(x)*cosh(y)
cosh(2*x) = cosh(x)^2 + sinh(x)^2
Hyperbolic functions : Compare with trigonometric function in PM section 14
Hypergeometric probability
H(x) = C(n,x)*C(N-n,n-x)/C(N,n)
H(x) = C(n,x)*C(N-n,s-x)/C(N,s)
Go to Begin
Q09. I
Induction method
14 00 Induction method
14 06 Induction : S(n) = 1/(1*3) + 1/(3*5) + .... = (1 - 1/(2*n+1))/2
14 07 Induction : S(n) = 1/(1*2*3) + 1/(2*3*4) + .... = n*(n+3)/(4*(n+1)*(n+2)
14 08 Induction : S(n) = 1^2 + 3^2 + 5^2 + ... = n*(4*n^2 - 1)/3
14 09 Induction : S(n) = 1*(2^2) + 2*(3^2) + ... = n*(n+1)*(n+2)*(3*n+5)/12
14 10 Induction : S(n) = (1 -4/1)*(1 - 4/9)*(1 - 4/25)*(1 - 4/49)*......
14 11 Induction : S(n) = (1 + 1)*(1 + 1/2)*(1 + 1/3)*.....*(1 + 1/n) = n + 1
14 12 Induction : S(n) = (1^2)/(1*3) + (2^2)/(3*5) + .... = (n*(n+1))/(2*(2*n+1))
14 13 Induction : S(n) = 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2. Is it true
14 14 Induction : S(n) = n^2 + n + 41. Is it always a prime number ?
14 17 Induction : Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)
15 00 Inequality
15 02 Solve x^2 - 6*x + 8 < 0
15 08 Solve (x-1)/(x+1) > 1
15 09 Solve (x-1)/(x+1) > 2
Inverse of y = e^x is y = ln(x)
e^(ln(x)) = x
ln(e^x) = x
Inverse of y = ln(x) is y = e^x
e^(ln(x)) = x
ln(e^x) = x
05 03 Inverse of y = a*x^2 + b*x + c is x = a*y^2 + b*y + c
Go to Begin
Q10. J
Go to Begin
Q11. K
Go to Begin
Q12. L
11 01 Linear equations
09 02 Logarithmic laws
Go to Begin
Q13. M
03 04 Magic number patterns
03 05 Matrix pattern : Find row number and column number of 100
1, 03, 06, 10, 15, 21, ...
2, 05, 09, 14, 20, .......
4, 08, 13, 19, ...........
7, 12, 18, ...............
03 10 Multiple of number whose digits are same.
Go to Begin
Q14. N
17 12 Normal distribution : N(z LT a)
03 11 Number : Amicable number pairs.
03 05 Number : Numbers arranged in matrix. 1st row sequence 1,3,6,10, ...
03 12 Number : Perfect numbers.
03 03 Number : Properties based on factors of number.
14 15 Number : Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
14 16 Number : Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6
07 01 n! : definition and trailor zeros in n!
Go to Begin
Q15. O
Go to Begin
Q16. P
05 04 Parabola : Locus, Focus and directrix
08 05 Pascal triangle : Sequence and series
03 12 Perfect number : How to find the third perfect number ?
1st perfect number : 1 + 2 + 3 = 6
2nd perfect number : 1 + 2 + 4 + 7 + 14 = 28
03 07 Perfect square numbers.
17 01 Permutation : P(n,r)
17 02 Take r from N symbols for arrangement without duplicate : P(n,r)
17 02 Take r from N symbols for arrangement with duplicate : n^r
08 13 Pi in series
21 00 Polynomial equation
21 11 Solve x^7 + 2*x^6 - 5*x^5 - 13*x^4 - 13*x^3 - 5*x^2 + x + 1 = 0
Go to Begin
Q17. Q
11 04 Quaint equation
21 01 Quaint equation : Graphic solution
12 06 Quartic equation : (x-p)*(x-q)*(x-r)*(x-s) = t
11 03 Quartic equation : (x-5)*(x-7)*(x+4)*(x+6) = 504
21 01 Quartic function : y = a*x^4 + b*x^3 + ....
21 01 Quartic function : y = (x-p)*(x-q)*(x-r)*(x-s) - t
11 01 Quadratic equations
11 10 Quadratic equations : x^2 -5*x + 2*Sqr(x^2 - 5*x + 3) = 12
05 01 Quadratic functions : Defintion and application
05 02 Quadratic functions : With absolute operation
05 03 Quadratic functions : Inverse
05 04 Quadratic functions : Parabola
Go to Begin
Q18. R
16 01 Rational function : y = 1/(x + 1)
16 02 Rational function : y = 1/(x^2 - 1)
16 03 Rational function : y = 1/(x^3 -2*x - x + 2)
16 06 Rational function : y = x + 4/(x^2)
16 04 Rational function : y = (x^2 -2*x + 1)/(x)
16 05 Rational function : y = ((x - 1)^3)/(2*x)
03 01 Real number system
01 04 Remainder theory
Go to Begin
Q19. S
07 04 Sequence in Pascal triangle.
T(1)
T(n)
T(n*(n+1)/2!)
T(n*(n+1)*(n+2)/3!)
T(n*(n+1)*(n+2)*(n+3)/4!)
08 01 Series : A.P.
08 02 Series : G.P.
08 13 Series : pi
08 03 Series : Sum[n^2] = n*(n+1)*(2*n+1)/6.
08 04 Series : Sum[n^3] = (n*(n+1)/2)^2.
07 08 Series : Sum[n^4] = ?
08 05 Series : Series and sequence in Pascal triangle.
Sum[n*(n+1)/2!] = n*(n+1)*(n+2)/3!
Sum[n*(n+1)*(n+2)/3!] = n*(n+1)*(n+2)*(n+3)/4!
Sum[n*(n+1)*(n+2)*(n+3)/4!] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
08 05 Series : Series and sequence in Pascal triangle.
Sum[C(n+1),2)] = C(n+2,3)
Sum[C(n+2),3)] = C(n+3,4)
Sum[C(n+3),4)] = C(n+4,5)
08 06 Series : Special
S(n) = 1/(1*2) + 1/(2*3) + 1/(3*4) + ........ + 1/((n-1)*n) = ?.
S(n) = 1/(1*2*3) + 1/(2*3*4) + ... + 1/((n*(n+1)*(n+2)) = ?
S(n) = 1/3 + 1/15 + 1/35 + ...... + 1/((2*n-1)*(2*n+1)) = ?
08 08 Series : 1^3 + 3^3 + 5^3 + ..... (2*n-1)^3 = ?
08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + ..... n*((n+1)^2) = ?
08 07 Series : S(n) = 1 - 2 + 3 - 4 + 5 - 6 + ....... - n if n is even
08 08 Series : 1^3 + 3^3 + 5^3 + .... = ?
08 09 Series : 1*(2^2) + 2*(3^2) + 3*(4^2) + .... = ?
08 10 Series : 1^3 + 2^3 + ... + n^3 GT (n^4)/4 GT 1^3 + 2^3 + ... +(n-1)^3
08 11 Series : (1-1/4)*(1-1/9)*(1-1/16)*....*(1-1/((n+1)^2 = (n+1)/2*n. n GT 1
08 12 Series : 1 - 2 + 3 - 4 + ...... + n and n is odd
11 10 Simultaneous equations
x + y = 3 (line)
x*y = 2 (Hyperbola)
11 10 Simultaneous equations
x - y = 1
x*y = 2 (Hyperbola)
11 10 Simultaneous equations
x^2 + y^2 = 4 (Circle)
x*y = 1 (Hyperbola)
16 06 Slant asymptote in y = x + 4/(x^2)
03 07 Square free numbers.
03 08 Square root : How to find Sqr(3) ?
Go to Begin
Q20. T
Go to Begin
Q21. U
Go to Begin
Q22. V
05 05 Vertex of quadratic function
16 06 Vertical asymptote in y = x + 4/(x^2)
Go to Begin
Q23. W
Go to Begin
Q24. X
Go to Begin
Q25. Y
Go to Begin
Q26. Z
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.