Counter
Mathematics Dictionary
Dr. K. G. Shih

Cosine Law


  • Q01 | - Diagram : Proof of cosine law
  • Q02 | - Cosine Law
  • Q03 | - Area of triangle = b*c*sin(A)/2
  • Q04 | - Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))
  • Q05 | - Area of triangle = Sqr(s*(s-a)*(s-b)*(s-c))
  • Q06 | - Solve triangle if SAS is given
  • Q07 | - Application : Direction of sum of two vectros

  • Q01. Diagram : Proof of sine law



    Go to Begin

    Q02. Coine Law

    Cosine law.
    • Defintion : Trianle ABC
      • a^2 = b^2 + c^2 - 2*b*c*cos(A).
      • b^2 = c^2 + a^2 - 2*c*a*cos(B).
      • c^2 = a^2 + b^2 - 2*b*c*cos(C).
    • Application : Solve triangle if SAS are given
      • Solve triangle if b, A, c are given.
      • Solve triangle if c, B, a are given.
      • Solve triangle if a, C, b are given.
    Proof of cosine law
    • Construction
      • Draw triangle ABC.
      • Draw AH perpendicular to AB and let AH = h.
      • Let AH = x and BH = c - x
    • Proof of a^2 = b^2 + b^2 - 2*b*b*cos(A).
      • Triangle BCH
        • a^2 = h^2 + (c - x)^2.
        • a^2 = h^2 + c^2 + x^2 - 2*c*x.
      • Triangle AHC : x = b*cos(A) and h = b*sin(A)
      • a^2 = (b^2)*sin(A)^2 + b^2)*cos(A)^2 + c^2 - 2*b*c*cos(A).
      • Since sin(A)^2 + cos(A)^2 = 1
      • Hence a^2 = b^2 + c^2 - 2*b*c*cos(A)
    Application

    Go to Begin

    Q03. Area triangle = b*c*Sin(A)/2

    Proof

    Go to Begin

    Q04. Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)

    Proof
    • Proof sin(A) = 2*Sqr(s*(s-a)(s-b)*(s-c))/(b*c).

    Go to Begin

    Q05. Area of triangle = Sqr(s(s-a)*(s-b)*(s-c)/(b*c))

    Proof
    • Proof Area of triangle = Sqr(s*(s-a)(s-b)*(s-c))

    Go to Begin

    Q06. Solve triangle if SAS are given

    Example : if a = 2 and b = 3 and angle C = 60 degrees, find other side c.
    • c^2 = 2^2 + 3^2 - 2*2*3*cos(60).
    • c^2 = 4 + 9 - 12*(1/2).
    • c^2 = 7.0
    • Hence c = 2.64575.

    Go to Begin

    Q07. Application : Direction of sum of two vectors

    Application : Sum of two vectors
    • From A walks 2 km to east at B. Then walks 1 km to N.E. at C.
    • Find the distance and direction between A and C.
    • Solution
      • let AC = b, AB = c = 2 km, BC = a = 1 km.
      • Angle ABC = B = 180 - 45 degrees = 135 degrees.
      • Hence b^2 = a^2 + c^2 - 2*a*c*cos(135)
      • Hence b^2 = 1^2 + 2^2 + 4*cos(45) = 5 + 2*Sqr(2).
      • Hence b = Sqr(5 + 2*Sqr(2)) = Sqr(7.828427) = 2.79793 km.
      • Find direction by sine law in triangle ABC.
      • a/sin(A) = b/sin(B)
      • Hence sin(A) = (a*sin(B))/b = sin(135)/2.79793 = 0.50545.
      • Hence A = arcsin(0.50545)30.3612 degrees.

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1 1