Mathematics Dictionary
Dr. K. G. Shih
Cosine Law
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Diagram : Proof of cosine law
Q02 |
- Cosine Law
Q03 |
- Area of triangle = b*c*sin(A)/2
Q04 |
- Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))
Q05 |
- Area of triangle = Sqr(s*(s-a)*(s-b)*(s-c))
Q06 |
- Solve triangle if SAS is given
Q07 |
- Application : Direction of sum of two vectros
Q01. Diagram : Proof of sine law
Go to Begin
Q02. Coine Law
Cosine law.
Defintion : Trianle ABC
a^2 = b^2 + c^2 - 2*b*c*cos(A).
b^2 = c^2 + a^2 - 2*c*a*cos(B).
c^2 = a^2 + b^2 - 2*b*c*cos(C).
Application : Solve triangle if SAS are given
Solve triangle if b, A, c are given.
Solve triangle if c, B, a are given.
Solve triangle if a, C, b are given.
Proof of cosine law
Construction
Draw triangle ABC.
Draw AH perpendicular to AB and let AH = h.
Let AH = x and BH = c - x
Proof of a^2 = b^2 + b^2 - 2*b*b*cos(A).
Triangle BCH
a^2 = h^2 + (c - x)^2.
a^2 = h^2 + c^2 + x^2 - 2*c*x.
Triangle AHC : x = b*cos(A) and h = b*sin(A)
a^2 = (b^2)*sin(A)^2 + b^2)*cos(A)^2 + c^2 - 2*b*c*cos(A).
Since sin(A)^2 + cos(A)^2 = 1
Hence a^2 = b^2 + c^2 - 2*b*c*cos(A)
Application
Use cosine law to prove
sin(A/2) = Sqr((s-b)*(s-c)/(b*c))
cos(A/2) = Sqr(s*(s-a)/(b*c))
Go to Begin
Q03. Area triangle = b*c*Sin(A)/2
Proof
Proof
sin(A) = b*c*sin(A)/2
Go to Begin
Q04. Sin(A) = 2*Sqr(s*(s-a)*(s-b)*(s-c))/(b*c)
Proof
Proof
sin(A) = 2*Sqr(s*(s-a)(s-b)*(s-c))/(b*c).
Go to Begin
Q05. Area of triangle = Sqr(s(s-a)*(s-b)*(s-c)/(b*c))
Proof
Proof
Area of triangle = Sqr(s*(s-a)(s-b)*(s-c))
Go to Begin
Q06. Solve triangle if SAS are given
Example : if a = 2 and b = 3 and angle C = 60 degrees, find other side c.
c^2 = 2^2 + 3^2 - 2*2*3*cos(60).
c^2 = 4 + 9 - 12*(1/2).
c^2 = 7.0
Hence c = 2.64575.
Go to Begin
Q07. Application : Direction of sum of two vectors
Application : Sum of two vectors
From A walks 2 km to east at B. Then walks 1 km to N.E. at C.
Find the distance and direction between A and C.
Solution
let AC = b, AB = c = 2 km, BC = a = 1 km.
Angle ABC = B = 180 - 45 degrees = 135 degrees.
Hence b^2 = a^2 + c^2 - 2*a*c*cos(135)
Hence b^2 = 1^2 + 2^2 + 4*cos(45) = 5 + 2*Sqr(2).
Hence b = Sqr(5 + 2*Sqr(2)) = Sqr(7.828427) = 2.79793 km.
Find direction by sine law in triangle ABC.
a/sin(A) = b/sin(B)
Hence sin(A) = (a*sin(B))/b = sin(135)/2.79793 = 0.50545.
Hence A = arcsin(0.50545)30.3612 degrees.
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.