Counter
Mathematics Dictionary
Dr. K. G. Shih

Derivatives of the logarithmic family
Subjects


Answers


Q01. Derivative of y = ln(x)

Use laws of logarithm : ln(A)-ln(B) = ln(A/B) and ln(A^B) = B*ln(A)
  • dy/dx = Lim[(ln(x+h) - ln(x))/h]
  • dy/dx = Lim[(ln(x+h)/x)/h]
  • dy/dx = Lim[(ln(1 + h/x)/(x/h/x)]
  • dy/dx = (1/x)*Lim[(ln(1 + h/x)*(x/h)]
  • dy/dx = (1/x)*Lim[(ln(1 + h/x)^(x/h)]
  • Sine Lim[(1 + 1/a)^a] = 1 as h tends to zero
  • Hence d/dx(ln(x) = 1/x
Use d/dx(e^x) = e^x and ln(e^x) = x
  • y = ln(x) and x = e^y
  • d/dx(x) = d/dx(e^y)
  • 1 = (d/dy(e^y))*(dy/dx)
  • Hence dy/dx = 1/(e^y) = 1/x

Go to Begin

Q02. Derivative of y = arcsinh(x)

Formula : y = arcsinh(x) = ln(x + Sqr(X^2 + 1))
  • dy/dx = d/dx(ln(x + Sqr(X^2 + 1)))
  • dy/dx = (1/(x + Sqr(x^2 + 1))*d/dx(x + Sqr(X^2 + 1))
  • dy/dx = (1/(x + Sqr(x^2 + 1))*(1 + 2*x/(2*Sqr(x^2 + 1))
  • dy/dx = (1/(x + Sqr(x^2 + 1))*(x + Sqr(x^2 + 1))/Sqr(x^2 + 1)
  • dy/dx = 1/Sqr(x^2 + 1)
Note
  • Compare d/dx(arcsin(x)) with d/dx(arcsinh(x)), we can see the similarity.

Go to Begin

Q03. Derivative of y = arccosh(x)

Formula : y = arccosh(x) = ln(x + Sqr(X^2 - 1))
  • dy/dx = d/dx(ln(x + Sqr(X^2 - 1)))
  • dy/dx = (1/(x + Sqr(x^2 - 1))*d/dx(x + Sqr(X^2 - 1))
  • dy/dx = (1/(x + Sqr(x^2 - 1))*(1 + 2*x/(2*Sqr(x^2 - 1))
  • dy/dx = (1/(x + Sqr(x^2 - 1))*(x + Sqr(x^2 - 1))/Sqr(x^2 - 1)
  • dy/dx = 1/Sqr(x^2 - 1)
Note
  • Compare d/dx(arccos(x)) with d/dx(arccosh(x)), we can see the similarity.

Go to Begin

Q04. Derivative of y = arctanh(x)

Formula : y = arctanh(x) = ln((1 + x)/(1 - x))/2
  • dy/dx = d/dx(ln(1 + x)/(1 - x))/2
  • dy/dx = ((1 - x)/(1 + x))*d/dx((1 + x)/(1 - x))/2
  • dy/dx = ((1 - x)/(1 + x))*((1-x)*1 - (1+x)*(-1))/((1 - x)^2)/2
  • dy/dx = ((1 - x)/(1 + x))*(2/((1 - x)^2)/2
  • dy/dx = ((1 - x)/(1 + x))/(1 - x^2)
  • dy/dx = +1/(1 - x^2)
Note
  • Compare d/dx(arctan(x)) with d/dx(arctanh(x)), we can see the similarity.

Go to Begin

Q05. Derivative of y = arccsch(x)

Formula : y = arccsch(x) = ln(1/x + Sqr(1/x^2 + 1))
  • dy/dx = d/dx(ln(1/x + Sqr(1/x^2 + 1))
  • dy/dx = 1/(1/x + Sqr(1/x^2 + 1))*d/dx(1/x + Sqr(1/x^2 + 1))
  • dy/dx = 1/(1/x + Sqr(1/x^2 + 1))*(-1/x^2 - 2*x/(2*Sqr(1/x^2 + 1)))
  • dy/dx = 1/(1/x + Sqr(1/x^2 + 1))*(-Sqr(1/x^2 + 1) - 1/x)/((x^2)*(Sqr(1/x^2 + 1)))
  • dy/dx = -1/((x^2)*(Sqr(1/x^2 + 1)))
  • dy/dx = -1/(x*Sqr(x^2 + 1))
Note
  • Compare d/dx(arccsc(x)) with d/dx(arccsch(x)), we can see the similarity.

Go to Begin

Q06. Derivative of y = arcsech(x)

Formula : y = arcsech(x) = ln(1/x + Sqr(1/x^2 - 1))
  • dy/dx = d/dx(ln(1/x + Sqr(1/x^2 - 1))
  • dy/dx = 1/(1/x + Sqr(1/x^2 - 1))*d/dx(1/x + Sqr(1/x^2 - 1))
  • dy/dx = 1/(1/x + Sqr(1/x^2 - 1))*(-1/x^2 - 2*x/(2*Sqr(1/x^2 - 1)))
  • dy/dx = 1/(1/x + Sqr(1/x^2 - 1))*(-Sqr(1/x^2 - 1) - 1/x)/((x^2)*(Sqr(1/x^2 - 1)))
  • dy/dx = 1/((x^2)*(Sqr(1/x^2 - 1)))
  • dy/dx = -1/(x*Sqr(1 - x^2))
Note
  • Compare d/dx(arcsec(x)) with d/dx(arcsech(x)), we can see the similarity.

Go to Begin

Q07. Derivative of y = arccoth(x)

Formula : y = arccoth(x) = ln((1 + x)/(1 - x))/2
  • dy/dx = d/dx(ln(x + 1)/(x - 1))/2
  • dy/dx = ((x - 1)/(x + 1))*d/dx((x + 1)/(x - 1))/2
  • dy/dx = ((x - 1)/(x + 1))*((x - 1)*1 - (x + 1)*(1))/((x - 1)^2)/2
  • dy/dx = ((x - 1)/(x + 1))*((x - 1)*1 - (x + 1)*(1))/((x - 1)^2)/2
  • dy/dx = ((x - 1)/(x + 1))*(-2/((x - 1)^2)/2
  • dy/dx = ((x - 1)/(x + 1))*(-2/((x - 1)^2)/2
  • dy/dx = ((1 - x)/(1 + x))*(-1)/(1 - x^2)
  • dy/dx = -1/(1 - x^2)
Note
  • Compare d/dx(arccot(x)) with d/dx(arccoth(x)), we can see the similarity.

Go to Begin

Q08. Answer

Go to Begin

Q09. Answer

Go to Begin

Q10. Reference

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1