Mathematics Dictionary
Dr. K. G. Shih
Derivatives of the logarithmic family
Subjects
Read Symbol defintion
Example : y' is the first derivative of y
Q01 |
- Derivative of y = ln(x)
Q02 |
- Derivative of y = arcsinh(x)
Q03 |
- Derivative of y = arccosh(x)
Q04 |
- Derivative of y = arctanh(x)
Q05 |
- Derivative of y = arccsch(x)
Q06 |
- Derivative of y = arcsech(x)
Q07 |
- Derivative of y = arccoth(x)
Q08 |
-
Q09 |
-
Q10 |
- Reference
Answers
Q01. Derivative of y = ln(x)
Use laws of logarithm : ln(A)-ln(B) = ln(A/B) and ln(A^B) = B*ln(A)
dy/dx = Lim[(ln(x+h) - ln(x))/h]
dy/dx = Lim[(ln(x+h)/x)/h]
dy/dx = Lim[(ln(1 + h/x)/(x/h/x)]
dy/dx = (1/x)*Lim[(ln(1 + h/x)*(x/h)]
dy/dx = (1/x)*Lim[(ln(1 + h/x)^(x/h)]
Sine Lim[(1 + 1/a)^a] = 1 as h tends to zero
Hence d/dx(ln(x) = 1/x
Use d/dx(e^x) = e^x and ln(e^x) = x
y = ln(x) and x = e^y
d/dx(x) = d/dx(e^y)
1 = (d/dy(e^y))*(dy/dx)
Hence dy/dx = 1/(e^y) = 1/x
Go to Begin
Q02. Derivative of y = arcsinh(x)
Formula : y = arcsinh(x) = ln(x + Sqr(X^2 + 1))
dy/dx = d/dx(ln(x + Sqr(X^2 + 1)))
dy/dx = (1/(x + Sqr(x^2 + 1))*d/dx(x + Sqr(X^2 + 1))
dy/dx = (1/(x + Sqr(x^2 + 1))*(1 + 2*x/(2*Sqr(x^2 + 1))
dy/dx = (1/(x + Sqr(x^2 + 1))*(x + Sqr(x^2 + 1))/Sqr(x^2 + 1)
dy/dx = 1/Sqr(x^2 + 1)
Note
Compare d/dx(arcsin(x)) with d/dx(arcsinh(x)), we can see the similarity.
Go to Begin
Q03. Derivative of y = arccosh(x)
Formula : y = arccosh(x) = ln(x + Sqr(X^2 - 1))
dy/dx = d/dx(ln(x + Sqr(X^2 - 1)))
dy/dx = (1/(x + Sqr(x^2 - 1))*d/dx(x + Sqr(X^2 - 1))
dy/dx = (1/(x + Sqr(x^2 - 1))*(1 + 2*x/(2*Sqr(x^2 - 1))
dy/dx = (1/(x + Sqr(x^2 - 1))*(x + Sqr(x^2 - 1))/Sqr(x^2 - 1)
dy/dx = 1/Sqr(x^2 - 1)
Note
Compare d/dx(arccos(x)) with d/dx(arccosh(x)), we can see the similarity.
Go to Begin
Q04. Derivative of y = arctanh(x)
Formula : y = arctanh(x) = ln((1 + x)/(1 - x))/2
dy/dx = d/dx(ln(1 + x)/(1 - x))/2
dy/dx = ((1 - x)/(1 + x))*d/dx((1 + x)/(1 - x))/2
dy/dx = ((1 - x)/(1 + x))*((1-x)*1 - (1+x)*(-1))/((1 - x)^2)/2
dy/dx = ((1 - x)/(1 + x))*(2/((1 - x)^2)/2
dy/dx = ((1 - x)/(1 + x))/(1 - x^2)
dy/dx = +1/(1 - x^2)
Note
Compare d/dx(arctan(x)) with d/dx(arctanh(x)), we can see the similarity.
Go to Begin
Q05. Derivative of y = arccsch(x)
Formula : y = arccsch(x) = ln(1/x + Sqr(1/x^2 + 1))
dy/dx = d/dx(ln(1/x + Sqr(1/x^2 + 1))
dy/dx = 1/(1/x + Sqr(1/x^2 + 1))*d/dx(1/x + Sqr(1/x^2 + 1))
dy/dx = 1/(1/x + Sqr(1/x^2 + 1))*(-1/x^2 - 2*x/(2*Sqr(1/x^2 + 1)))
dy/dx = 1/(1/x + Sqr(1/x^2 + 1))*(-Sqr(1/x^2 + 1) - 1/x)/((x^2)*(Sqr(1/x^2 + 1)))
dy/dx = -1/((x^2)*(Sqr(1/x^2 + 1)))
dy/dx = -1/(x*Sqr(x^2 + 1))
Note
Compare d/dx(arccsc(x)) with d/dx(arccsch(x)), we can see the similarity.
Go to Begin
Q06. Derivative of y = arcsech(x)
Formula : y = arcsech(x) = ln(1/x + Sqr(1/x^2 - 1))
dy/dx = d/dx(ln(1/x + Sqr(1/x^2 - 1))
dy/dx = 1/(1/x + Sqr(1/x^2 - 1))*d/dx(1/x + Sqr(1/x^2 - 1))
dy/dx = 1/(1/x + Sqr(1/x^2 - 1))*(-1/x^2 - 2*x/(2*Sqr(1/x^2 - 1)))
dy/dx = 1/(1/x + Sqr(1/x^2 - 1))*(-Sqr(1/x^2 - 1) - 1/x)/((x^2)*(Sqr(1/x^2 - 1)))
dy/dx = 1/((x^2)*(Sqr(1/x^2 - 1)))
dy/dx = -1/(x*Sqr(1 - x^2))
Note
Compare d/dx(arcsec(x)) with d/dx(arcsech(x)), we can see the similarity.
Go to Begin
Q07. Derivative of y = arccoth(x)
Formula : y = arccoth(x) = ln((1 + x)/(1 - x))/2
dy/dx = d/dx(ln(x + 1)/(x - 1))/2
dy/dx = ((x - 1)/(x + 1))*d/dx((x + 1)/(x - 1))/2
dy/dx = ((x - 1)/(x + 1))*((x - 1)*1 - (x + 1)*(1))/((x - 1)^2)/2
dy/dx = ((x - 1)/(x + 1))*((x - 1)*1 - (x + 1)*(1))/((x - 1)^2)/2
dy/dx = ((x - 1)/(x + 1))*(-2/((x - 1)^2)/2
dy/dx = ((x - 1)/(x + 1))*(-2/((x - 1)^2)/2
dy/dx = ((1 - x)/(1 + x))*(-1)/(1 - x^2)
dy/dx = -1/(1 - x^2)
Note
Compare d/dx(arccot(x)) with d/dx(arccoth(x)), we can see the similarity.
Go to Begin
Q08. Answer
Go to Begin
Q09. Answer
Go to Begin
Q10. Reference
Analytic geommetry
Hyperbolic function
Picture Mathematics by Dr. K. G. Shih, P129 - P135 and P175
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.