Mathematics Dictionary
Dr. K. G. Shih
Arc length and Area
Subjects
Symbol Defintion
Example : x^2 is square of x
CA 09 01 |
- The length of arc
CA 09 02 |
- The circumference of circle is 2*pi
CA 09 03 |
- Area of circle = pi*r^2
CA 09 04 |
- Area of ellipse = pi*a*b
CA 09 05 |
- Area enclosed by y = sin(x) and x-axis for x = 0 to x = pi
CA 09 06 |
- Volume of sphere
CA 09 07 |
-
CA 09 08 |
-
CA 09 09 |
-
CA 09 10 |
-
Answers
CA 09 01. The length of arc
Definition
Rectangular coordinate :
y = F(x), find arc length from A(x1,y1) to B(x2,y2)
Distance between A(x1,y1) and B(x2,y2) = Sqr((x2-x1)^2 + (y2-y1)^2)
It is Lim[Sqr((dx)^2 + (dy)^2))] as B approach A
It is dL = Lim[Sqr(1 + (dy/dx)^2))]dx as B approach A
L =
∫
Sqr(1 + (y')^2)dx
Polar coordinate
Arc length = r*A where A is angle
dL = r*dA = arc length of angle dA
L =
∫
∫rDA
Parametric equation
x = F(t) and y = G(t)
dy/dx = (dy/dt)/(dx/dt)
L =
∫
Sqr(1 + (y')^2)dx
Reference
Study Subjects | Analytic geometry
Analytic geometry
Go to Begin
CA 09 02. Circumference of circle
Prove that the circumference of circle is 2*pi*r using rectangular coordinates
Circle : x^2 + y^2 = r^2
y = Sqr(r^2 - x^2) is semi-circle
dy/dx = -x/y
dL = Sqr((1 + (dy/dx)^2))dx
dL = Sqr((1 + (-x/y)^2))dx
dL = Sqr((x^2 + y^2)/y^2))dx
dL = (r/y)dx
dL = r*(1/Sqr(r - x^2)dx
L =
∫
r*(1/Sqr(1-x^2))dx for x from 0 to r
Let x = cos(A) and dx = -sin(A)dA
If x = 0, 0 = cos(A) and A = pi/2
If x = 1, 1 = cos(A) and A = 0
L =
∫
r*(-1)dA = r*pi/2 if A = pi/2 to A = 0
Hence circumstance = 4*(r*pi/2) = 2*pr
Prove that the circumference of circle is 2*pi*r using polar coordinates
C = ∫ rDA for angle A from 0 to 2*pi
C = r*A = r*(2*pi - 0)
C = 2*pi*r
Prove that the circumference of circle is 2*pi*r using parametric equations
Equation of circle : x = r*cos(A) and y = r*sin(A)
dy/dx = (dy/dt)/(dx/dt) = cos(t)/(-sin(t) = -cot(t)
dL = Sqr(1 + (dy/dx)^2)dx
dL = Sqr(1 + cot(t)^2)dx
dL = Sqr(csc(x)^2)dx and dx = -(r*sin(t))dt
dL = r*(csc(x))*(-r*sin(t))dt
dL = r*dt
L =
∫
r*dt = 2*pi*r if t = 0 to t = 2*pi
Go to Begin
CA 09 03. Aera of circle is A = pi*(r^2)
Method 1 : Polar coordinate
dA = r*dL = dr*(r*dU)
A =
∫
r*dr*du and U from 0 to 2*pi
A = (r^2)*U/2
A = (r^2)*(2*pi - 0)/2
A = pi*r^2
Method 2 : Rectangular method
Equation of circle : x^2 + y^2 = r^2
dA = y*dx
dA = Sqr(r^2 - x^2)*dx
Hence A =
∫
Sqr(r^2 - x^2)*dx and x form -r to r
Let x = r*cos(U) and U from pi to 0
dx = -r*sin(u)*dU
Hence A =
∫
r*Sqr(1 - cos(U)^2)*r*sin(U)*dU
A =
∫
-(r^2)*Sqr(1 - cos(U)^2)*sin(U)*dU
A =
∫
-(r^2)*(sin(U)^2)*dU
A =
∫
-(r^2)*(1/2 - cos(2*U))*dU
A =-(r^2)*(1/2)*U for U from pi to 0
A = 0 - (-1)*(r^2)*(1/2)*(pi) This is for semi-circle
Hence area = pi*(r^2)
Note
∫
(sin(x)^2)*dx
∫
(1/2 - cos(2*x))*dx
Go to Begin
CA 09 04. Area of ellipse = pi*a*b
Method 2 : Rectangular method
Equation of ellipse : (x^2)/(a^2) + (y^2)/(b^2) = 1
dA = y*dx
dA = Sqr(b^2 - (b^2)*(x^2)/(a^2))*dx
Hence A =
∫
Sqr(b^2 - (b^2)*(x^2)/(a^2))*dx
Where x from -a to a
Let x = a*cos(U)
If x = -a, then -a = a*cos(U) and U = pi
If x = +a, theb +a = a*cos(U) and U = 0
dx = -a*sin(u)*dU
Hence A =
∫
b*Sqr(1 - cos(U)^2)*(-a*sin(U))*dU
A =
∫
-(a*b)*Sqr(1 - cos(U)^2)*sin(U)*dU
A =
∫
-(a*b)*(sin(U)^2)*dU
A =
∫
-(a*b)*(1/2 - cos(2*U))*dU
A =-(a*b)*(1/2)*U for U from pi to 0
A = 0 - (-a*b)*(1/2)*(pi) This is for semi-circle
Hence area = pi*(a8b)
Go to Begin
CA 09 05. Area enclosed by y = sin(x) and x-axis for x = 0 to x = pi
A =
∫
sin(x)*dx
A = -cos(x) for x = 0 to x = pi
A = -cos(pi) - (-cos(0))
A = -(-1) + 1
A = 2
Go to Begin
CA 09 06. Volume of sphere
Diagram in polar form
OF = r and GF = r*cos(U)
Angle EOF = U
Angle ZOE = Angle HGF = V
dU is increment along angle U
dV is increment along angle V
dr is increment along radius r
Polar form
Arc length of angle dU is r*dU
Arc length of angle dV is r*cos(U)*dv
dA = (dr)*(r*dU)*(r*cos(U)*dV)
Hence A = 8*
∫
r^2*cos(U)*dU*dV*dr
Hence A = 8*((r^3)/3)*(-sin(U)*V for U = 0 to pi/2 and V = 0 to pi/2
Hence A = 4*pi*(r^3)/3
Rectangular form
Rotate y = Sqr(r^2 - x^2) about axis
dA = pi*(y^2)*dx
Hence A =
∫
pi*(r^2 - x^2)*dx for x = -r to r
Hence A = pi*(x - x^3)/3
Hence A = pi*(2*r^3 - 2*(r^3)/3)
Hence A = 4*pi*(r^3)/3
Go to Begin
CA 09 07. Answer
Go to Begin
CA 09 08. Answer
Go to Begin
CA 09 09. Answer
Go to Begin
CA 09 10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.