Counter
Mathematics Dictionary
Dr. K. G. Shih

Arc length and Area
Subjects


  • CA 09 01 | - The length of arc
  • CA 09 02 | - The circumference of circle is 2*pi
  • CA 09 03 | - Area of circle = pi*r^2
  • CA 09 04 | - Area of ellipse = pi*a*b
  • CA 09 05 | - Area enclosed by y = sin(x) and x-axis for x = 0 to x = pi
  • CA 09 06 | - Volume of sphere
  • CA 09 07 | -
  • CA 09 08 | -
  • CA 09 09 | -
  • CA 09 10 | -

  • Answers


    CA 09 01. The length of arc

    Definition
    • Rectangular coordinate :
      • y = F(x), find arc length from A(x1,y1) to B(x2,y2)
      • Distance between A(x1,y1) and B(x2,y2) = Sqr((x2-x1)^2 + (y2-y1)^2)
      • It is Lim[Sqr((dx)^2 + (dy)^2))] as B approach A
      • It is dL = Lim[Sqr(1 + (dy/dx)^2))]dx as B approach A
      • L = Sqr(1 + (y')^2)dx
    • Polar coordinate
      • Arc length = r*A where A is angle
      • dL = r*dA = arc length of angle dA
      • L = ∫rDA
    • Parametric equation
      • x = F(t) and y = G(t)
      • dy/dx = (dy/dt)/(dx/dt)
      • L = Sqr(1 + (y')^2)dx
    Reference

    Go to Begin

    CA 09 02. Circumference of circle

    Prove that the circumference of circle is 2*pi*r using rectangular coordinates
    • Circle : x^2 + y^2 = r^2
    • y = Sqr(r^2 - x^2) is semi-circle
    • dy/dx = -x/y
    • dL = Sqr((1 + (dy/dx)^2))dx
    • dL = Sqr((1 + (-x/y)^2))dx
    • dL = Sqr((x^2 + y^2)/y^2))dx
    • dL = (r/y)dx
    • dL = r*(1/Sqr(r - x^2)dx
    • L = r*(1/Sqr(1-x^2))dx for x from 0 to r
      • Let x = cos(A) and dx = -sin(A)dA
      • If x = 0, 0 = cos(A) and A = pi/2
      • If x = 1, 1 = cos(A) and A = 0
      • L = r*(-1)dA = r*pi/2 if A = pi/2 to A = 0
      • Hence circumstance = 4*(r*pi/2) = 2*pr
    Prove that the circumference of circle is 2*pi*r using polar coordinates
    • C = ∫ rDA for angle A from 0 to 2*pi
    • C = r*A = r*(2*pi - 0)
    • C = 2*pi*r
    Prove that the circumference of circle is 2*pi*r using parametric equations
    • Equation of circle : x = r*cos(A) and y = r*sin(A)
    • dy/dx = (dy/dt)/(dx/dt) = cos(t)/(-sin(t) = -cot(t)
    • dL = Sqr(1 + (dy/dx)^2)dx
    • dL = Sqr(1 + cot(t)^2)dx
    • dL = Sqr(csc(x)^2)dx and dx = -(r*sin(t))dt
    • dL = r*(csc(x))*(-r*sin(t))dt
    • dL = r*dt
    • L = r*dt = 2*pi*r if t = 0 to t = 2*pi

    Go to Begin

    CA 09 03. Aera of circle is A = pi*(r^2)

    Method 1 : Polar coordinate
    • dA = r*dL = dr*(r*dU)
    • A = r*dr*du and U from 0 to 2*pi
    • A = (r^2)*U/2
    • A = (r^2)*(2*pi - 0)/2
    • A = pi*r^2
    Method 2 : Rectangular method
    • Equation of circle : x^2 + y^2 = r^2
    • dA = y*dx
    • dA = Sqr(r^2 - x^2)*dx
    • Hence A = Sqr(r^2 - x^2)*dx and x form -r to r
    • Let x = r*cos(U) and U from pi to 0
    • dx = -r*sin(u)*dU
    • Hence A =r*Sqr(1 - cos(U)^2)*r*sin(U)*dU
    • A =-(r^2)*Sqr(1 - cos(U)^2)*sin(U)*dU
    • A =-(r^2)*(sin(U)^2)*dU
    • A =-(r^2)*(1/2 - cos(2*U))*dU
    • A =-(r^2)*(1/2)*U for U from pi to 0
    • A = 0 - (-1)*(r^2)*(1/2)*(pi) This is for semi-circle
    • Hence area = pi*(r^2)
    Note
    • (sin(x)^2)*dx
    • (1/2 - cos(2*x))*dx

    Go to Begin

    CA 09 04. Area of ellipse = pi*a*b

    Method 2 : Rectangular method
    • Equation of ellipse : (x^2)/(a^2) + (y^2)/(b^2) = 1
    • dA = y*dx
    • dA = Sqr(b^2 - (b^2)*(x^2)/(a^2))*dx
    • Hence A = Sqr(b^2 - (b^2)*(x^2)/(a^2))*dx
    • Where x from -a to a
    • Let x = a*cos(U)
    • If x = -a, then -a = a*cos(U) and U = pi
    • If x = +a, theb +a = a*cos(U) and U = 0
    • dx = -a*sin(u)*dU
    • Hence A =b*Sqr(1 - cos(U)^2)*(-a*sin(U))*dU
    • A =-(a*b)*Sqr(1 - cos(U)^2)*sin(U)*dU
    • A =-(a*b)*(sin(U)^2)*dU
    • A =-(a*b)*(1/2 - cos(2*U))*dU
    • A =-(a*b)*(1/2)*U for U from pi to 0
    • A = 0 - (-a*b)*(1/2)*(pi) This is for semi-circle
    • Hence area = pi*(a8b)

    Go to Begin

    CA 09 05. Area enclosed by y = sin(x) and x-axis for x = 0 to x = pi

    • A = sin(x)*dx
    • A = -cos(x) for x = 0 to x = pi
    • A = -cos(pi) - (-cos(0))
    • A = -(-1) + 1
    • A = 2

    Go to Begin

    CA 09 06. Volume of sphere
    Diagram in polar form
    • OF = r and GF = r*cos(U)
    • Angle EOF = U
    • Angle ZOE = Angle HGF = V
    • dU is increment along angle U
    • dV is increment along angle V
    • dr is increment along radius r

    Polar form
    • Arc length of angle dU is r*dU
    • Arc length of angle dV is r*cos(U)*dv
    • dA = (dr)*(r*dU)*(r*cos(U)*dV)
    • Hence A = 8*r^2*cos(U)*dU*dV*dr
    • Hence A = 8*((r^3)/3)*(-sin(U)*V for U = 0 to pi/2 and V = 0 to pi/2
    • Hence A = 4*pi*(r^3)/3
    Rectangular form
    • Rotate y = Sqr(r^2 - x^2) about axis
    • dA = pi*(y^2)*dx
    • Hence A = pi*(r^2 - x^2)*dx for x = -r to r
    • Hence A = pi*(x - x^3)/3
    • Hence A = pi*(2*r^3 - 2*(r^3)/3)
    • Hence A = 4*pi*(r^3)/3

    Go to Begin

    CA 09 07. Answer

    Go to Begin

    CA 09 08. Answer

    Go to Begin

    CA 09 09. Answer

    Go to Begin

    CA 09 10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1