Mathematics Dictionary
Dr. K. G. Shih
Integral of trigonometric functions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
Q01 |
-
∫
sin(x)dx = -cos(x) + C
Q02 |
-
∫
cos(x)dx = +sin(x) + C
Q03 |
-
∫
tan(x)dx = -ln(cos(x)) + C
Q04 |
-
∫
csc(x)dx = ln(csc(x) - cot(x)) + C
Q05 |
-
∫
sec(x)dx = ln(sec(x) + tan(x)) + C
Q06 |
-
∫
cot(x)dx = +ln(sin(x)) + C
Q07 |
-
∫
(sin(x)^2)dx = ?
Q08 |
-
∫
(cos(x)^2)dx = ?
Q09 |
-
∫
(tan(x)^2)dx = ?
Q10 |
-
∫
(csc(x)^2)dx = ?
Q11 |
-
∫
(sec(x)^2)dx = ?
Q12 |
-
∫
(cot(x)^2)dx = ?
Q13 |
-
∫
(sin(x)*cos(x))dx = ?
Q14 |
-
∫
(sin(2*x))dx = ?
Answers
Q01.
∫
sin(x)dx = -cos(x) + C
Since we know that d/dx(cos(x)) = -sin(x)
Hence d(cos(x)) = -sin(x)dx
Hence cos(x) =
∫
-sin(x)dx
Hence
∫
sin(x)dx = -cos(x) + C
Go to Begin
Q02.
∫
cos(x)dx = -sin(x) + C
Since we know that d/dx(sin(x)) = cos(x)
Hence d(sin(x)) = cos(x)dx
Hence sin(x) =
∫
cos(x)dx
Hence
∫
cos(x)dx = sin(x) + C
Go to Begin
Q03.
∫
tan(x)dx = -ln(cos(x)) + C
Since we know that d/dx(tan(x)) = sec(x)^2
Hence d(tan(x)) = (sec(x)^2)dx
Hence tan(x) =
∫
(sec(x)^2)dx
Hence
∫
(sec(x)^2)dx = tan(x) + C
We can not get intgration of tan(x) by anti-derivative
Porve that integration of tan(x) is -ln(cos(x))
tan(x)dx = (sin(x)dx)/cos(x)
sin(x)dx = d(-cos(x))
Let cos(x) = u, then tan(x)dx = du/u
Hence
∫
tan(x)dx = -ln(u) + C = -ln(cos(x)) + C
Verify
d/dx(-ln(cos(x)) + C) = (-1/cos(x))*(d/dx(cos(x))) = (-1)*(-sin(x)/cos(x) = tan(x)
Go to Begin
Q04.
∫
csc(x)dx = ln(csc(x)) - cot(x))
It is hard to work from left to right. We will find d/dx(F(x)) = csc(x)
From right side, we prove d/dx(ln(csc(x) - cot(x)) = csc(x)
use chain rule and d/dx(ln(u)) = (1/u)*(du/dx)
d/dx(ln(csc(x) - cot(x))
= (1/(csc(x) - cot(x))*(d/dx(csc(x) - cot(x))
= (1/(csc(x) - cot(x))*(-csc(x)*cot(x) - (-csc(x)^2)
= (1/(csc(x) - cot(x))*(csc(x)*(-cot(x) + csc(x))
= csc(x)
Hence csc(x)dx = d(ln(csc(x) - cot(x))
Hence
∫
csc(x)dx = ln(csc(x) - cot(x))
Go to Begin
Q05.
∫
sec(x)dx = ln(sec(x)) + tan(x))
It is hard to work from left to right. We will find d/dx(F(x)) = sec(x)
From right side, we prove d/dx(ln(sec(x) + tan(x)) = sec(x)
use chain rule and d/dx(ln(u)) = (1/u)*(du/dx)
d/dx(ln(sec(x) + tan(x))
= (1/(sec(x) + tan(x))*(d/dx(sec(x) + tan(x))
= (1/(sec(x) + tan(x))*(sec(x)*tan(x) + sec(x)^2)
= (1/(sec(x) + tan(x))*(sec(x)*(tan(x) + sec(x))
= sec(x)
Hence sec(x)dx = d(ln(sec(x) + tan(x))
Hence
∫
sec(x)dx = ln(sec(x) + tan(x))
Go to Begin
Q06.
∫
cot(x)dx = +ln(sin(x)) + C
Since we know that d/dx(cot(x)) = -csc(x)^2
Hence d(cot(x)) = (-ssc(x)^2)dx
Hence cot(x) =
∫
(-csc(x)^2)dx
Hence
∫
(-csc(x)^2)dx = cot(x) + C
We can not get intgration of cot(x) by anti-derivative
Porve that integration of cot(x) is ln(sin(x))
cot(x)dx = (cos(x)dx)/sin(x)
cos(x)dx = d(sin(x))dx
Let sin(x) = u, then cot(x)dx = du/u
Hence
∫
cot(x)dx = ln(u) + C = ln(sin(x)) + C
Go to Begin
Q07.
∫
(sin(x)^2)dx = ?
No anti-derivative is given
Use cos(2*x) = 1 - 2*sin(x)^2
Hence sin(x)^2 = (1 - cos(2*x))/2
∫
(sin(x)^2)dx =
∫
((1 - cos(2*x)/2)dx = x/2 - sin(2*x)/4
Verify
d/dx(x/2 - sin(2*x)/4) = 1/2 - 1/2*cos(2*x) = (1 - cos(2*x))/2 = sin(x)^2
Go to Begin
Q08.
∫
(cos(x)^2)dx = ?
No anti-derivative is given
Use cos(2*x) = 2*cos(x)^2 - 1
Hence cos(x)^2 = (1 + cos(2*x))/2
∫
(cos(x)^2)dx =
∫
((1 + cos(2*x)/2)dx = x/2 + sin(2*x)/4
Verify
d/dx(x/2 + sin(2*x)/4) = 1/2 + 1/2*cos(2*x) = (1 + cos(2*x))/2 = cos(x)^2
Go to Begin
Q09.
∫
(tan(x)^2)dx = ?
No anti-derivative is given
Use 1 + tan(x)^2 = sec(x)^2 and d/dx(tan(x)) = sec(x)^2
Hence tan(x)^2 = sec(2*x)^2 - 1
∫
(tan(x)^2)dx =
∫
((sec(x)^2 - 1)dx = tan(x) - x
Verify
d/dx(tan(x) - x) = sec(x)^2 - 1 = tan(x)^2
Go to Begin
Q10.
∫
(csc(x)^2)dx = ?
There is anti-derivative.
Since d/dx(cot(x)) = -csc(x)^2
Hence d(cot(x)) = (-csc(2*x)^2)dx
∫
(-csc(x)^2)dx = cot(x) + C
Verify
d/dx(cot(x)) = -csc(x)^2
Go to Begin
Q11.
∫
(sec(x)^2)dx = ?
There is anti-derivative.
Since d/dx(tan(x)) = sec(x)^2
Hence d(tan(x)) = (sec(2*x)^2)dx
∫
(sec(x)^2)dx = tan(x) + C
Verify
d/dx(tan(x)) = sec(x)^2
Go to Begin
Q12.
∫
(cot(x)^2)dx = ?
No anti-derivative is given
Use 1 + cot(x)^2 = csc(x)^2 and d/dx(cot(x)) = -csc(x)^2
Hence cot(x)^2 = csc(2*x)^2 - 1
∫
(cot(x)^2)dx =
∫
((csc(x)^2 - 1)dx = -cot(x) - x
Verify
d/dx(-cot(x) - x) = csc(x)^2 - 1 = cot(x)^2
Go to Begin
Q13.
∫
(sin(x)*cos(x))dx = ?
No anti-derivative is given
Let u = sin(x) and then du = cos(x)dx
Hence the integrant (sin(x)*cos(x))dx = udu
∫
(sin(x)*cos(x))dx =
∫
udu = u^2/2 = (sin(x)^2)/2 + C
Verify
d/dx((sin(x)^2/)/2) = 2*sin(x)*ccos(x)/2 = sin(x)*cos(x)
Second method :
∫
(sin(x)*cos(x))dx = ?
Let u = cos(x) and then du = -sin(x)dx
Hence the integrant (sin(x)*cos(x))dx = -udu
∫
(sin(x)*cos(x))dx =
∫
-udu = -u^2/2 = -(cos(x)^2)/2 + C
Verify
d/dx((-cos(x)^2/)/2) = -2*cos(x)*(-sin(x))/2 = sin(x)*cos(x)
Formula
1.
∫
(sin(x)^n)*cos(x)dx = -(cos(x)^(n+1))/(n+1)
2.
∫
(cos(x)^n)*sin(x)dx = +(sin(x)^(n+1))/(n+1)
Go to Begin
Q14.
∫
(sin(2*x))dx = ?
No anti-derivative is given
Let u = 2*x and du = 2*dx
Hence the integant is sin(u)*(1/2)du
∫
(sin(2*x))dx =
∫
(sin(u)(1/2)du = -cos(u)/2 = -cos(2*x)/2 + C
Verify
d/dx(-cos(2*x)/2) = -(-2*sin(2*x))/2 = sin(2*x)
Example :
∫
(cos(2*x))dx = ?
No anti-derivative is given
Let u = 2*x and du = 2*dx
Hence the integant is cos(u)*(1/2)du
∫
(cos(2*x))dx =
∫
(cos(u)(1/2)du = sin(u)/2 = sin(2*x)/2 + C
Verify
d/dx(sin(2*x)/2) = (2*cos(2*x))/2 = cos(2*x)
Formula
1.
∫
(sin(n*x))dx = -cos(n*x)/(n+1)
2.
∫
(cos(n*x))dx = +sin(n*x)/(n+1)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.