Mathematics Dictionary
Dr. K. G. Shih
Integral by part
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
Q01 |
- Integral by part
Q02 |
- Find
∫
ln(x)dx
Q03 |
- Find
∫
x*exp(x)dx
Q04 |
- Find
∫
x*sin(x)dx
Q05 |
- Find
∫
exp(x)*sin(x)
Q06 |
- Find
∫
(x^2)*exp(x)
Q07 |
- New
Q08 |
-
∫
(-1/Sqr(1 - x^2))dx = arccos(x)
Q09 |
-
∫
(1/(1 + x^2))dx =arctan(x)
Q10 |
-
∫
(-1/(x*Sqr(x^2 - 1)))dx = arccsc(x)
Q11 |
-
∫
(1/(x*Sqr(x^2 - 1)))dx = arcsec(x)
Q12 |
-
∫
(-/(1 + x^2))dx = arccot(x)
Q13 |
-
∫
(sin(x)*cos(x))dx = ?
Q14 |
-
∫
(sin(2*x))dx = ?
Answers
Q01. Integral by part
Definition
It is corresponding the product rule in derivative
Product rule : d/dx(F(x)*G(x)) = F'(x)*G(x) + F(x)*G'(x)
Hence d(F(x)*G(x)) = (F'(x)*G(x) + F(x)*G'(x))dx
Hence F(x)*G(x) =
∫
(F'(x)*G(x) + F(x)*G'(x))dx
Hence
∫
F'(x)*G(x)dx = F(x)*G(x) -
∫
F(x)*G'(x)dx
Go to Begin
Q02. Find
∫
ln(x)dx
There is no corresponding derivative, we try integral by part
Let dv = dx and v = x
Let u = ln(x) and du = (1/x)dx
Integral = u*v -
∫
vdu
Integral = x*ln(x) -
∫
x*(1/x)dx
Integral = x*ln(x) - x
Verufy
d/dx(x*ln(x) - x) = (ln(x) + x*(1/x) - 1) = ln(x)
Go to Begin
Q03. Find
∫
x*exp(x)dx
There is no corresponding derivative, we try integral by part
Let dv = exp(x)dx and v = exp(x)
Let u = x and du = dx
Integral = u*v -
∫
vdu
Integral = x*exp(x) -
∫
exp(x)dx
Integral = x*exp(x) - exp(x)
Verufy
d/dx(x*exp(x) - exp(x)) = (exp(x) + x*exp(x) - exp(x)) = x*exp(x)
Go to Begin
Q04. Find
∫
x*sin(x)dx
There is no corresponding derivative, we try integral by part
Let dv = sin(x)dx and v = -cos(x)
Let u = x and du = dx
Integral = u*v -
∫
vdu
Integral = -x*cos(x) +
∫
cos(x)dx
Hence
∫
x*sin(x)dx = -x*cos(x) + sin(x)
Verufy
d/dx(sin(x) - x*cos(x))/2 = (cos(x) - cos(x) + x*sin(x)) = x*sin(x)
Go to Begin
Q05. Find
∫
exp(x)*sin(x)dx
There is no corresponding derivative, we try integral by part
Let dv = exp(x)dx and v = exp(x)
Let u = sin(x) and du = cos(x)dx
Integral = u*v -
∫
vdu
Integral = exp(x)*sin(x) +
∫
exp(x)*cos(x)dx
What is
∫
exp(x)*cos(x)dx ?
Integral by part again
Let dv = exp(x)dx and v = exp(x)
Let u = cos(x) and du = -sin(x)dx
Integral = u*v -
∫
vdu
Integral = exp(x)*cos(x) -
∫
exp(x)*sin(x)dx
∫
x*sin(x)dx
= exp(x)*sin(x) +
∫
exp(x)*cos(x)dx
=exp(x)*sin(x) + exp(x)*cos(x) -
∫
exp(x)*sin(x)dx
2*
∫
exp(x)*sin(x)dx = exp(x)*sin(x) - exp(x)*cos(x)
Hence
∫
x*sin(x)dx = (exp(x)*sin(x) - exp(x)*cos(x))/2
Verify
d/dx(exp(x)*sin(x) - exp(x)*cos(x))/2
= (exp(x)*sin(x) + sxp(x)*cos(x) - exp(x)*cos(x) + exp(x)*sin(x))/2
= exp(x)*sin(x)
Go to Begin
Q06. Find
∫
(x^2)*exp(x)
There is no corresponding derivative, we try integral by part
Let dv = exp(x)dx and v = exp(x)
Let u = x^2 and du = 2*xdx
Integral = u*v -
∫
vdu
Integral = (x^2)exp(x) -
∫
2*x*exp(x)dx
What is
∫
2*x*exp(x)dx ?
Integral by part again
Let dv = exp(x)dx and v = exp(x)
Let u = 2x and du = 2dx
Integral = u*v -
∫
vdu
Integral = 2*x*exp(x) -
∫
exp(x)dx = exp(x)
∫
(x^2)*exp(x)dx
= (x^2)*exp(x) -
∫
x*exp(x)dx
= (x^2)*exp(x) - 2*x*exp(x) + 2*exp(x) Verify
d/dx((x^2)*exp(x) - 2*x*exp(x) + 2*exp(x))
=
Go to Begin
Q07.
∫
(1/Sqr(1 - x^2))dx = arcsin(x)
Use anti-derivative : d/dx(arcsin(x)) = 1/Sqr(1 - x^2)
d(arcsin(x)) = (1/Sqr(1 - x^2))dx
Hence integral of (1/Sqr(1 - x^2))dx = arcsin(x)
Second method
Let x = sin(U) then dx = cos(U)dU and U = arcsin(x)
Hence (1/Sqr(1 - x^2)*dx = (1/Sqr(1 - sin(U)^2))*(cos(U))dU
Since 1 - sin(U)^2 = cos(U)^2
Hence (1/Sqr(1 - x^2)*dx = dU
Hence
∫
(1/Sqr(1 - x^2))dx =
∫
dU = U = arcsin(x) + C
Go to Begin
Q08.
∫
(-1/Sqr(1-x^2))dx = arccos(x)
Use anti-derivative : d/dx(arccos(x)) = -1/Sqr(1 - x^2)
d(arccos(x)) = (-1/Sqr(1 - x^2))dx
Hence integral of (-1/Sqr(1 - x^2))dx = arccos(x)
Second method
Let x = cos(U) then dx = -sin(U)dU and U = arccos(x)
Hence (-1/Sqr(1 - x^2)*dx = (-1/Sqr(1 - cos(U)^2))*(-sin(U))dU
Since 1 - cos(U)^2 = sin(U)^2
Hence (-1/Sqr(1 - x^2)*dx = dU
Hence
∫
(-1/Sqr(1 - x^2))dx =
∫
dU = U = arccos(x) + C
Go to Begin
Q09.
∫
(1/(1 + x^2))dx = arctan(x)
Use derivative d/dx(arctan(x)) = 1/(1 + x^2)
d(arctan(x)) = (1/(1 + x^2))dx
Hence integral of (1/(1+x^2))dx = arctan(x)
Second method
Let x = tan(U) then dx = sec(U)^2)dU and U = arctan(x)
Hence (1/(1 + x^2)*dx = (1/(1 + tan(U)^2))*(sec(U)^2)dU
Since 1 + tan(U)^2 = sec(U)^2
Hence (1/(1 + x^2)*dx = dU
Hence
∫
(1/(1 + x^2))dx =
∫
dU = U = arctan(x) + C
Go to Begin
Q10.
∫
(csc(x)^2)dx = ?
There is anti-derivative.
Since d/dx(cot(x)) = -csc(x)^2
Hence d(cot(x)) = (-csc(2*x)^2)dx
∫
(-csc(x)^2)dx = cot(x) + C
Verify
d/dx(cot(x)) = -csc(x)^2
Go to Begin
Q11.
∫
(sec(x)^2)dx = ?
There is anti-derivative.
Since d/dx(tan(x)) = sec(x)^2
Hence d(tan(x)) = (sec(2*x)^2)dx
∫
(sec(x)^2)dx = tan(x) + C
Verify
d/dx(tan(x)) = sec(x)^2
Go to Begin
Q12.
∫
(-1/(1 + x^2))dx = arccot(x)
Use derivative d/dx(arccot(x)) = -1/(1 + x^2)
d(arccot(x)) = (-1/(1 + x^2))dx
Hence integral of (-1/(1+x^2))dx = arccot(x)
Second method
Let x = cot(U) then dx = (-csc(U)^2)dU and U = arccot(x)
Hence (-1/(1 + x^2)*dx = (1/(1 + cot(U)^2))*(-csc(U)^2)dU
Since 1 + tan(U)^2 = csc(U)^2
Hence (-1/(1 + x^2)*dx = dU
Hence
∫
(-1/(1 + x^2))dx =
∫
dU = U = arccot(x) + C
Go to Begin
Q13. New
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.