Counter
Mathematics Dictionary
Dr. K. G. Shih

Integral of inverse trigonometric functions
Subjects

    Symbol Defintion
    Example : Sqr(x) is square root of x

  • Q01 | - arcsin(x)dx = x*arcsin(x) + Sqr(1 - x^2)
  • Q02 | - arccos(x)dx =x*arccos(x) - Sqr(1 - x^2)
  • Q03 | - arctan(x)dx = x*arctan(x) - ln(1 + x^2)
  • Q04 | - arccsc(x)dx = x*arccsc(x) + ln(x + Sqr(x^2-1)
  • Q05 | - arcsec(x)dx = x*arcsec(x) - ln(x + Sqr(x^2-1)
  • Q06 | - arccot(x)dx = x*arccot(x) + ln(1 + x^2)
  • Q07 | - (1/Sqr(1 - x^2))dx = arcsin(x)
  • Q08 | - (-1/Sqr(1 - x^2))dx = arccos(x)
  • Q09 | - (1/(1 + x^2))dx =arctan(x)
  • Q10 | - (-1/(x*Sqr(x^2 - 1)))dx = arccsc(x)
  • Q11 | - (1/(x*Sqr(x^2 - 1)))dx = arcsec(x)
  • Q12 | - (-/(1 + x^2))dx = arccot(x)
  • Q13 | - (sin(x)*cos(x))dx = ?
  • Q14 | - (sin(2*x))dx = ?

Answers


Q01. arcsin(x)dx = x*arcsin(x) + Sqr(1 - x^2)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arcsin(x) and du = (1/Sqr(1 - x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arcsin(x) - (x/Sqr(1-x^2))dx
  • Find Integral = (x/Sqr(1-x^2))dx
    • Let w = 1 - x^2 and dw = -2*xdx
    • Hence integrant = (-1/(2*Sqr(w))dw = (-1/2)*(1/(-1/2+1)Sqr(w) = -Sqr(1 - x^2)
  • Hence arcsin(x)dx = x*arcsin(x) + Sqr(1 - x^2)

Go to Begin

Q02. arccos(x)dx = x*arccos(x) - Sqr(1 - x^2)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arccos(x) and du = (-1/Sqr(1 - x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arccos(x) + (x/Sqr(1-x^2))dx
  • Find Integral = (x/Sqr(1-x^2))dx
    • Let w = 1 - x^2 and dw = -2*xdx
    • Hence integrant = (-1/(2*Sqr(w))dw = (-1/2)*(1/(-1/2+1)Sqr(w) = -Sqr(1 - x^2)
  • Hence arccos(x)dx = x*arccos(x) - Sqr(1 - x^2)

Go to Begin

Q03. arctan(x)dx = x*arctan(x) - (ln(1 + x^2))/2

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arctan(x) and du = (1/(1 + x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arctan(x) + (x/(1 + x^2))dx
  • Find Integral = (x/(1 + x^2))dx
    • Let w = 1 + x^2 and dw = 2*xdx
    • Hence integrant = (1/2)*(1/(w))dw = (1/2)*(ln(w) = ln(1 + x^2)
  • Hence arctan(x)dx = x*arctan(x) - ln(1 + x^2)/2

Go to Begin

Q04. arccsc(x)dx = x*arccsc(x) + ln(x + Sqr(x^2 -1)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arccsc(x) and du = (-1/(x*Sqr(x^2 - 1)))dx
    • Integral = u*v - v*du
    • Integral = x*arccsc(x) - (-1/2)/Sqr(x^2 - 1))dx
  • Find Integral = (1/2)/Sqr(x^2 - 1))dx
    • Let w = x^2 - 1 and dw = 2*xdx
    • Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(x^2 - 1)
  • Hence arccsc(x)dx = x*arccsc(x) + Sqr(x^2 - 1)
Verify
  • d/dx(x*arccsc(x) + Sqr(x^2 - 1)
  • = arccsc(x) + x*(-1/(x*Sqr(x^2 - 1))) + (2*x)/(2*Sqr(x^2 - 1)
  • = arccsc(x)
Verify : the formula in title
  • d/dx(x*arccsc(x) + ln(x + Sqr(x^2 - 1))
  • = arccsc(x) + x/(-x*Sqr(x^2 - 1)) + (1/(x + Sqr(x^2 - 1))*(d/dx(x + Sqr(x^2 - 1)
  • = arccsc(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(1 + x/Sqr(x^2 - 1))
  • = arccsc(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(Sqr(x^2 - 1) + x)/Sqr(x^2 - 1))
  • = arccsc(x) - 1/Sqr(x^2 - 1) + (1/Sqr(x^2 - 1))
  • = arccsc(x)

Go to Begin

Q05.arcsec(x)dx = x*arcsec(x) - ln(x + Sqr(x^2 -1)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arcsec(x) and du = (1/(x*Sqr(x^2 - 1)))dx
    • Integral = u*v - v*du
    • Integral = x*arcsec(x) - (1/2)/Sqr(x^2 - 1))dx
  • Find Integral = (1/2)/Sqr(x^2 - 1))dx
    • Let w = x^2 - 1 and dw = 2*xdx
    • Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(x^2 - 1)
  • Hence arcsec(x)dx = x*arcsec(x) - Sqr(x^2 - 1)
Verify
  • d/dx(x*arcsec(x) - Sqr(x^2 - 1)
  • = arcsec(x) + x*(1/(x*Sqr(x^2 - 1))) - (2*x)/(2*Sqr(x^2 - 1)
  • = arcsec(x)
Verify : the formula in title
  • d/dx(x*arcsec(x) - ln(x + Sqr(x^2 - 1))
  • = arcsec(x) + x/(x*Sqr(x^2 - 1)) - (1/(x + Sqr(x^2 - 1))*(d/dx(x + Sqr(x^2 - 1)
  • = arcsec(x) + 1/Sqr(x^2 - 1) - (1/(x + Sqr(x^2 - 1)))*(1 + x/Sqr(x^2 - 1))
  • = arcsec(x) + 1/Sqr(x^2 - 1) - (1/(x + Sqr(x^2 - 1)))*(Sqr(x^2 - 1) + x)/Sqr(x^2 - 1))
  • = arcsec(x) + 1/Sqr(x^2 - 1) - (1/Sqr(x^2 - 1))
  • = arcsec(x)

Go to Begin

Q06. arccot(x)dx = x*arccot(x) + (ln(1 + x^2))/2

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arccot(x) and du = (-1/(1 + x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arccot(x) + (-x/(1 + x^2))dx
  • Find Integral = (x/(1 + x^2))dx
    • Let w = 1 + x^2 and dw = 2*xdx
    • Hence integrant = (1/2)*(1/(w))dw = (1/2)*(ln(w) = ln(1 + x^2)
  • Hence arctan(x)dx = x*arctan(x) + ln(1 + x^2)/2

Go to Begin

Q07. (1/Sqr(1 - x^2))dx = arcsin(x)

Use anti-derivative : d/dx(arcsin(x)) = 1/Sqr(1 - x^2)
  • d(arcsin(x)) = (1/Sqr(1 - x^2))dx
  • Hence integral of (1/Sqr(1 - x^2))dx = arcsin(x)
Second method
  • Let x = sin(U) then dx = cos(U)dU and U = arcsin(x)
  • Hence (1/Sqr(1 - x^2)*dx = (1/Sqr(1 - sin(U)^2))*(cos(U))dU
  • Since 1 - sin(U)^2 = cos(U)^2
  • Hence (1/Sqr(1 - x^2)*dx = dU
  • Hence (1/Sqr(1 - x^2))dx = dU = U = arcsin(x) + C

Go to Begin

Q08. (-1/Sqr(1-x^2))dx = arccos(x)

Use anti-derivative : d/dx(arccos(x)) = -1/Sqr(1 - x^2)
  • d(arccos(x)) = (-1/Sqr(1 - x^2))dx
  • Hence integral of (-1/Sqr(1 - x^2))dx = arccos(x)
Second method
  • Let x = cos(U) then dx = -sin(U)dU and U = arccos(x)
  • Hence (-1/Sqr(1 - x^2)*dx = (-1/Sqr(1 - cos(U)^2))*(-sin(U))dU
  • Since 1 - cos(U)^2 = sin(U)^2
  • Hence (-1/Sqr(1 - x^2)*dx = dU
  • Hence (-1/Sqr(1 - x^2))dx = dU = U = arccos(x) + C

Go to Begin

Q09. (1/(1 + x^2))dx = arctan(x)

Use derivative d/dx(arctan(x)) = 1/(1 + x^2)
  • d(arctan(x)) = (1/(1 + x^2))dx
  • Hence integral of (1/(1+x^2))dx = arctan(x)
Second method
  • Let x = tan(U) then dx = sec(U)^2)dU and U = arctan(x)
  • Hence (1/(1 + x^2)*dx = (1/(1 + tan(U)^2))*(sec(U)^2)dU
  • Since 1 + tan(U)^2 = sec(U)^2
  • Hence (1/(1 + x^2)*dx = dU
  • Hence (1/(1 + x^2))dx = dU = U = arctan(x) + C

Go to Begin

Q10. (csc(x)^2)dx = ?

There is anti-derivative.
  • Since d/dx(cot(x)) = -csc(x)^2
  • Hence d(cot(x)) = (-csc(2*x)^2)dx
  • (-csc(x)^2)dx = cot(x) + C
Verify
  • d/dx(cot(x)) = -csc(x)^2

Go to Begin

Q11. (sec(x)^2)dx = ?

There is anti-derivative.
  • Since d/dx(tan(x)) = sec(x)^2
  • Hence d(tan(x)) = (sec(2*x)^2)dx
  • (sec(x)^2)dx = tan(x) + C
Verify
  • d/dx(tan(x)) = sec(x)^2

Go to Begin

Q12. (-1/(1 + x^2))dx = arccot(x)

Use derivative d/dx(arccot(x)) = -1/(1 + x^2)
  • d(arccot(x)) = (-1/(1 + x^2))dx
  • Hence integral of (-1/(1+x^2))dx = arccot(x)
Second method
  • Let x = cot(U) then dx = (-csc(U)^2)dU and U = arccot(x)
  • Hence (-1/(1 + x^2)*dx = (1/(1 + cot(U)^2))*(-csc(U)^2)dU
  • Since 1 + tan(U)^2 = csc(U)^2
  • Hence (-1/(1 + x^2)*dx = dU
  • Hence (-1/(1 + x^2))dx = dU = U = arccot(x) + C

Go to Begin

Q13. New

Go to Begin


Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1