Mathematics Dictionary
Dr. K. G. Shih
Integral of inverse trigonometric functions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
Q01 |
-
∫
arcsin(x)dx = x*arcsin(x) + Sqr(1 - x^2)
Q02 |
-
∫
arccos(x)dx =x*arccos(x) - Sqr(1 - x^2)
Q03 |
-
∫
arctan(x)dx = x*arctan(x) - ln(1 + x^2)
Q04 |
-
∫
arccsc(x)dx = x*arccsc(x) + ln(x + Sqr(x^2-1)
Q05 |
-
∫
arcsec(x)dx = x*arcsec(x) - ln(x + Sqr(x^2-1)
Q06 |
-
∫
arccot(x)dx = x*arccot(x) + ln(1 + x^2)
Q07 |
-
∫
(1/Sqr(1 - x^2))dx = arcsin(x)
Q08 |
-
∫
(-1/Sqr(1 - x^2))dx = arccos(x)
Q09 |
-
∫
(1/(1 + x^2))dx =arctan(x)
Q10 |
-
∫
(-1/(x*Sqr(x^2 - 1)))dx = arccsc(x)
Q11 |
-
∫
(1/(x*Sqr(x^2 - 1)))dx = arcsec(x)
Q12 |
-
∫
(-/(1 + x^2))dx = arccot(x)
Q13 |
-
∫
(sin(x)*cos(x))dx = ?
Q14 |
-
∫
(sin(2*x))dx = ?
Answers
Q01.
∫
arcsin(x)dx = x*arcsin(x) + Sqr(1 - x^2)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arcsin(x) and du = (1/Sqr(1 - x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arcsin(x) -
∫
(x/Sqr(1-x^2))dx
Find Integral =
∫
(x/Sqr(1-x^2))dx
Let w = 1 - x^2 and dw = -2*xdx
Hence integrant = (-1/(2*Sqr(w))dw = (-1/2)*(1/(-1/2+1)Sqr(w) = -Sqr(1 - x^2)
Hence
∫
arcsin(x)dx = x*arcsin(x) + Sqr(1 - x^2)
Go to Begin
Q02.
∫
arccos(x)dx = x*arccos(x) - Sqr(1 - x^2)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arccos(x) and du = (-1/Sqr(1 - x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arccos(x) +
∫
(x/Sqr(1-x^2))dx
Find Integral =
∫
(x/Sqr(1-x^2))dx
Let w = 1 - x^2 and dw = -2*xdx
Hence integrant = (-1/(2*Sqr(w))dw = (-1/2)*(1/(-1/2+1)Sqr(w) = -Sqr(1 - x^2)
Hence
∫
arccos(x)dx = x*arccos(x) - Sqr(1 - x^2)
Go to Begin
Q03.
∫
arctan(x)dx = x*arctan(x) - (ln(1 + x^2))/2
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arctan(x) and du = (1/(1 + x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arctan(x) +
∫
(x/(1 + x^2))dx
Find Integral =
∫
(x/(1 + x^2))dx
Let w = 1 + x^2 and dw = 2*xdx
Hence integrant = (1/2)*(1/(w))dw = (1/2)*(ln(w) = ln(1 + x^2)
Hence
∫
arctan(x)dx = x*arctan(x) - ln(1 + x^2)/2
Go to Begin
Q04.
∫
arccsc(x)dx = x*arccsc(x) + ln(x + Sqr(x^2 -1)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arccsc(x) and du = (-1/(x*Sqr(x^2 - 1)))dx
Integral = u*v -
∫
v*du
Integral = x*arccsc(x) -
∫
(-1/2)/Sqr(x^2 - 1))dx
Find Integral =
∫
(1/2)/Sqr(x^2 - 1))dx
Let w = x^2 - 1 and dw = 2*xdx
Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(x^2 - 1)
Hence
∫
arccsc(x)dx = x*arccsc(x) + Sqr(x^2 - 1)
Verify
d/dx(x*arccsc(x) + Sqr(x^2 - 1)
= arccsc(x) + x*(-1/(x*Sqr(x^2 - 1))) + (2*x)/(2*Sqr(x^2 - 1)
= arccsc(x)
Verify : the formula in title
d/dx(x*arccsc(x) + ln(x + Sqr(x^2 - 1))
= arccsc(x) + x/(-x*Sqr(x^2 - 1)) + (1/(x + Sqr(x^2 - 1))*(d/dx(x + Sqr(x^2 - 1)
= arccsc(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(1 + x/Sqr(x^2 - 1))
= arccsc(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(Sqr(x^2 - 1) + x)/Sqr(x^2 - 1))
= arccsc(x) - 1/Sqr(x^2 - 1) + (1/Sqr(x^2 - 1))
= arccsc(x)
Go to Begin
Q05.
∫
arcsec(x)dx = x*arcsec(x) - ln(x + Sqr(x^2 -1)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arcsec(x) and du = (1/(x*Sqr(x^2 - 1)))dx
Integral = u*v -
∫
v*du
Integral = x*arcsec(x) -
∫
(1/2)/Sqr(x^2 - 1))dx
Find Integral =
∫
(1/2)/Sqr(x^2 - 1))dx
Let w = x^2 - 1 and dw = 2*xdx
Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(x^2 - 1)
Hence
∫
arcsec(x)dx = x*arcsec(x) - Sqr(x^2 - 1)
Verify
d/dx(x*arcsec(x) - Sqr(x^2 - 1)
= arcsec(x) + x*(1/(x*Sqr(x^2 - 1))) - (2*x)/(2*Sqr(x^2 - 1)
= arcsec(x)
Verify : the formula in title
d/dx(x*arcsec(x) - ln(x + Sqr(x^2 - 1))
= arcsec(x) + x/(x*Sqr(x^2 - 1)) - (1/(x + Sqr(x^2 - 1))*(d/dx(x + Sqr(x^2 - 1)
= arcsec(x) + 1/Sqr(x^2 - 1) - (1/(x + Sqr(x^2 - 1)))*(1 + x/Sqr(x^2 - 1))
= arcsec(x) + 1/Sqr(x^2 - 1) - (1/(x + Sqr(x^2 - 1)))*(Sqr(x^2 - 1) + x)/Sqr(x^2 - 1))
= arcsec(x) + 1/Sqr(x^2 - 1) - (1/Sqr(x^2 - 1))
= arcsec(x)
Go to Begin
Q06.
∫
arccot(x)dx = x*arccot(x) + (ln(1 + x^2))/2
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arccot(x) and du = (-1/(1 + x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arccot(x) +
∫
(-x/(1 + x^2))dx
Find Integral =
∫
(x/(1 + x^2))dx
Let w = 1 + x^2 and dw = 2*xdx
Hence integrant = (1/2)*(1/(w))dw = (1/2)*(ln(w) = ln(1 + x^2)
Hence
∫
arctan(x)dx = x*arctan(x) + ln(1 + x^2)/2
Go to Begin
Q07.
∫
(1/Sqr(1 - x^2))dx = arcsin(x)
Use anti-derivative : d/dx(arcsin(x)) = 1/Sqr(1 - x^2)
d(arcsin(x)) = (1/Sqr(1 - x^2))dx
Hence integral of (1/Sqr(1 - x^2))dx = arcsin(x)
Second method
Let x = sin(U) then dx = cos(U)dU and U = arcsin(x)
Hence (1/Sqr(1 - x^2)*dx = (1/Sqr(1 - sin(U)^2))*(cos(U))dU
Since 1 - sin(U)^2 = cos(U)^2
Hence (1/Sqr(1 - x^2)*dx = dU
Hence
∫
(1/Sqr(1 - x^2))dx =
∫
dU = U = arcsin(x) + C
Go to Begin
Q08.
∫
(-1/Sqr(1-x^2))dx = arccos(x)
Use anti-derivative : d/dx(arccos(x)) = -1/Sqr(1 - x^2)
d(arccos(x)) = (-1/Sqr(1 - x^2))dx
Hence integral of (-1/Sqr(1 - x^2))dx = arccos(x)
Second method
Let x = cos(U) then dx = -sin(U)dU and U = arccos(x)
Hence (-1/Sqr(1 - x^2)*dx = (-1/Sqr(1 - cos(U)^2))*(-sin(U))dU
Since 1 - cos(U)^2 = sin(U)^2
Hence (-1/Sqr(1 - x^2)*dx = dU
Hence
∫
(-1/Sqr(1 - x^2))dx =
∫
dU = U = arccos(x) + C
Go to Begin
Q09.
∫
(1/(1 + x^2))dx = arctan(x)
Use derivative d/dx(arctan(x)) = 1/(1 + x^2)
d(arctan(x)) = (1/(1 + x^2))dx
Hence integral of (1/(1+x^2))dx = arctan(x)
Second method
Let x = tan(U) then dx = sec(U)^2)dU and U = arctan(x)
Hence (1/(1 + x^2)*dx = (1/(1 + tan(U)^2))*(sec(U)^2)dU
Since 1 + tan(U)^2 = sec(U)^2
Hence (1/(1 + x^2)*dx = dU
Hence
∫
(1/(1 + x^2))dx =
∫
dU = U = arctan(x) + C
Go to Begin
Q10.
∫
(csc(x)^2)dx = ?
There is anti-derivative.
Since d/dx(cot(x)) = -csc(x)^2
Hence d(cot(x)) = (-csc(2*x)^2)dx
∫
(-csc(x)^2)dx = cot(x) + C
Verify
d/dx(cot(x)) = -csc(x)^2
Go to Begin
Q11.
∫
(sec(x)^2)dx = ?
There is anti-derivative.
Since d/dx(tan(x)) = sec(x)^2
Hence d(tan(x)) = (sec(2*x)^2)dx
∫
(sec(x)^2)dx = tan(x) + C
Verify
d/dx(tan(x)) = sec(x)^2
Go to Begin
Q12.
∫
(-1/(1 + x^2))dx = arccot(x)
Use derivative d/dx(arccot(x)) = -1/(1 + x^2)
d(arccot(x)) = (-1/(1 + x^2))dx
Hence integral of (-1/(1+x^2))dx = arccot(x)
Second method
Let x = cot(U) then dx = (-csc(U)^2)dU and U = arccot(x)
Hence (-1/(1 + x^2)*dx = (1/(1 + cot(U)^2))*(-csc(U)^2)dU
Since 1 + tan(U)^2 = csc(U)^2
Hence (-1/(1 + x^2)*dx = dU
Hence
∫
(-1/(1 + x^2))dx =
∫
dU = U = arccot(x) + C
Go to Begin
Q13. New
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.