Counter
Mathematics Dictionary
Dr. K. G. Shih

Integral of hyperbolic functions
Subjects

    Symbol Defintion
    Example : Sqr(x) is square root of x

  • Q01 | - sinh(x)dx = cosh(x) + C
  • Q02 | - cosh(x)dx = sinh(x) + C
  • Q03 | - tanh(x)dx = ln(cosh(x)) + C
  • Q04 | - csch(x)dx = ln(csch(x)) - coth(x)) + C
  • Q05 | - sech(x)dx = ln(sech(x) + tanh(x)) + C
  • Q06 | - coth(x)dx = + C
  • Q07 | - (sinh(x)^2)dx = ?
  • Q08 | - (cosh(x)^2)dx = ?
  • Q09 | - (tanh(x)^2)dx = ?
  • Q10 | - (csch(x)^2)dx = ?
  • Q11 | - (sech(x)^2)dx = ?
  • Q12 | - (coth(x)^2)dx = ?
  • Q13 | - (sinh(x)*cosh(x))dx = ?
  • Q14 | - (sinh(2*x))dx = ?

Answers


Q01. sinh(x)dx = cos(x) + C

Anti-derivative
  • Since we know that d/dx(cosh(x)) = sinh(x)
  • Hence d(cosh(x)) = sinh(x)dx
  • Hence cosh(x) = sinh(x)dx
  • Hence sinh(x)dx = cosh(x) + C
2nd method
  • cosh(x)dx
  • = ((exp^x + exp^(-x))/2)dx
  • = (exp^x - exp^(-x))/2
  • = sinh(x) + C

Go to Begin

Q02. cosh(x)dx = sinh(x) + C

Anti-derivative
  • Since we know that d/dx(sinh(x)) = cosh(x)
  • Hence d(sinh(x)) = cosh(x)dx
  • Hence sinh(x) = cosh(x)dx
  • Hence cosh(x)dx = sinh(x) + C
2nd method
  • cosh(x)dx
  • = ((exp^x + exp^(-x))/2)dx
  • = (exp^x - exp^(-x))/2
  • = sinh(x) + C

Go to Begin

Q03. tan(x)dx = ln(cosh(x)) + C

There is no anti-derivative
  • Since we know that d/dx(tan(x)) = sec(x)^2
  • Hence d(tan(x)) = (sec(x)^2)dx
  • Hence tan(x) = (sec(x)^2)dx
  • Hence (sec(x)^2)dx = tan(x) + C
  • We can not get intgration of tan(x) by anti-derivative
Porve that integration of tan(x) is -ln(cos(x))
  • tanh(x)dx = (sinh(x)dx)/cosh(x)
  • sinh(x)dx = d(cosh(x))
  • Let cosh(x) = u, then du = sinh(x)dx
  • Hence tanh(x)dx = du/u
  • Hence tanh(x)dx = ln(u) + C = ln(cosh(x)) + C
Verify
  • d/dx(ln(cosh(x)) + C) = (1/cosh(x))*(d/dx(cosh(x))) = sinh(x)/cosh(x) = tanh(x)

Go to Begin

Q04. csch(x)dx = ln(csch(x)) - coth(x))

It is hard to work from left to right. We will find d/dx(F(x)) = csch(x)
  • From right side, we prove d/dx(ln(csch(x) - coth(x)) = csch(x)
    • use chain rule and d/dx(ln(u)) = (1/u)*(du/dx)
    • d/dx(ln(csch(x) - coth(x))
    • = (1/(csch(x) - coth(x))*(d/dx(csch(x) - coth(x))
    • = (1/(csch(x) - coth(x))*(csch(x)*coth(x) - (csch(x)^2)
    • = (1/(csch(x) - coth(x))*(csch(x)*(coth(x) - csch(x))
    • = csch(x)
  • Hence csch(x)dx = d(ln(csch(x) - coth(x))
  • Hence csch(x)dx = ln(csch(x) - coth(x))

Go to Begin

Q05.sech(x)dx = ln(sech(x)) + tanh(x))

It is hard to work from left to right. We will find d/dx(F(x)) = sech(x)
  • From right side, we prove d/dx(ln(sec(x) + tan(x)) = sec(x)
    • use chain rule and d/dx(ln(u)) = (1/u)*(du/dx)
    • d/dx(ln(sech(x) + tanh(x))
    • = (1/(sech(x) + tanh(x))*(d/dx(sech(x) + tanh(x))
    • = (1/(sech(x) + tanh(x))*(sech(x)*tanh(x) + sech(x)^2)
    • = (1/(sech(x) + tanh(x))*(sech(x)*(tanh(x) + sech(x))
    • = sech(x)
  • Hence sech(x)dx = d(ln(sech(x) + tanh(x))
  • Hence sech(x)dx = ln(sech(x) + tanh(x))

Go to Begin

Q06. coth(x)dx = +ln(sinh(x)) + C There is no anti-derivative
  • Since we know that d/dx(coth(x)) = csch(x)^2
  • Hence d(coth(x)) = (ssch(x)^2)dx
  • Hence coth(x) = (csch(x)^2)dx
  • Hence (csch(x)^2)dx = coth(x) + C
  • We can not get intgration of coth(x) by anti-derivative
Porve that integration of coth(x) is ln(sinh(x))
  • coth(x)dx = (cosh(x)dx)/sinh(x)
  • cosh(x)dx = d(sinh(x))dx
  • Let sinh(x) = u and du = cosh(x)dx
  • Then coth(x)dx = du/u
  • Hence coth(x)dx = ln(u) + C = ln(sinh(x)) + C

Go to Begin

Q07. (sinh(x)^2)dx = ?

No anti-derivative is given
  • Use cosh(2*x) = 1 + 2*sinh(x)^2
  • Hence sinh(x)^2 = (1 + cosh(2*x))/2
  • (sinh(x)^2)dx = ((1 + cosh(2*x)/2)dx = x/2 + sinh(2*x)/4
Verify
  • d/dx(x/2 + sinh(2*x)/4) = 1/2 + (1/2)*cosh(2*x) = (1 + cosh(2*x))/2 = sinh(x)^2

Go to Begin

Q08. (cosh(x)^2)dx = ?

No anti-derivative is given
  • Use cosh(2*x) = 2*cosh(x)^2 - 1
  • Hence cosh(x)^2 = (1 + cosh(2*x))/2
  • (cosh(x)^2)dx = ((1 + cosh(2*x)/2)dx = x/2 + sinh(2*x)/4
Verify
  • d/dx(x/2 + sinh(2*x)/4) = 1/2 + (1/2)*cosh(2*x) = (1 + cosh(2*x))/2 = cosh(x)^2

Go to Begin

Q09. (tanh(x)^2)dx = ?

No anti-derivative is given
  • Use 1 + tanh(x)^2 = sech(x)^2 and d/dx(tanh(x)) = sech(x)^2
  • Hence tanh(x)^2 = sech(2*x)^2 - 1
  • (tanh(x)^2)dx = ((sech(x)^2 - 1)dx = tanh(x) - x
Verify
  • d/dx(tanh(x) - x) = sech(x)^2 - 1 = tanh(x)^2

Go to Begin

Q10. (csch(x)^2)dx = ?

There is anti-derivative.
  • Since d/dx(coth(x)) = csch(x)^2
  • Hence d(coth(x)) = (csch(2*x)^2)dx
  • (csch(x)^2)dx = coth(x) + C
Verify
  • d/dx(coth(x)) = csch(x)^2

Go to Begin

Q11. (sech(x)^2)dx = ?

There is anti-derivative.
  • Since d/dx(tanh(x)) = sech(x)^2
  • Hence d(tanh(x)) = (sech(2*x)^2)dx
  • (sech(x)^2)dx = tanh(x) + C
Verify
  • d/dx(tanh(x)) = sech(x)^2

Go to Begin

Q12. (coth(x)^2)dx = ?

No anti-derivative is given
  • Use 1 + coth(x)^2 = csch(x)^2 and d/dx(coth(x)) = csch(x)^2
  • Hence coth(x)^2 = csch(x)^2 - 1
  • (coth(x)^2)dx = ((csch(x)^2 - 1)dx = coth(x) - x
Verify
  • d/dx(coth(x) - x) = csch(x)^2 - 1 = coth(x)^2

Go to Begin

Q13. (sinh(x)*cosh(x))dx = ?

No anti-derivative is given
  • Let u = sinh(x) and then du = cosh(x)dx
  • Hence the integrant (sinh(x)*cosh(x))dx = udu
  • (sinh(x)*cosh(x))dx = udu = u^2/2 = (sinh(x)^2)/2 + C
Verify
  • d/dx((sinh(x)^2/)/2) = 2*sinh(x)*cosh(x)/2 = sinh(x)*cosh(x)
Second method : (sin(x)*cos(x))dx = ?

  • Let u = cosh(x) and then du = sinh(x)dx
  • Hence the integrant (sinh(x)*cosh(x))dx = -udu
  • (sinh(x)*cosh(x))dx = udu = u^2/2 = (cosh(x)^2)/2 + C
Verify
  • d/dx((cosh(x)^2/)/2) = 2*cosh(x)*(sinh(x))/2 = sinh(x)*cosh(x)
Formula
  • 1. (sinh(x)^n)*cos(x)dx = (cos(x)^(n+1))/(n+1)
  • 2. (cosh(x)^n)*sin(x)dx = (sin(x)^(n+1))/(n+1)

Go to Begin

Q14. (sinh(2*x))dx = ?

No anti-derivative is given
  • Let u = 2*x and du = 2*dx
  • Hence the integant is sinh(u)*(1/2)du
  • (sinh(2*x))dx = (sinh(u)(1/2)du = cosh(u)/2 = cosh(2*x)/2 + C
Verify
  • d/dx(cosh(2*x)/2) = (2*sinh(2*x))/2 = sinh(2*x)
Example : (cosh(2*x))dx = ?

No anti-derivative is given
  • Let u = 2*x and du = 2*dx
  • Hence the integant is cosh(u)*(1/2)du
  • (cosh(2*x))dx = (cosh(u)(1/2)du = sinh(u)/2 = sinh(2*x)/2 + C
Verify
  • d/dx(sinh(2*x)/2) = (2*cosh(2*x))/2 = cosh(2*x)
Formula
  • 1. (sinh(n*x))dx = cos(n*x)/(n+1)
  • 2. (cosh(n*x))dx = sin(n*x)/(n+1)

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1