Mathematics Dictionary
Dr. K. G. Shih
Integral of hyperbolic functions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
Q01 |
-
∫
sinh(x)dx = cosh(x) + C
Q02 |
-
∫
cosh(x)dx = sinh(x) + C
Q03 |
-
∫
tanh(x)dx = ln(cosh(x)) + C
Q04 |
-
∫
csch(x)dx = ln(csch(x)) - coth(x)) + C
Q05 |
-
∫
sech(x)dx = ln(sech(x) + tanh(x)) + C
Q06 |
-
∫
coth(x)dx = + C
Q07 |
-
∫
(sinh(x)^2)dx = ?
Q08 |
-
∫
(cosh(x)^2)dx = ?
Q09 |
-
∫
(tanh(x)^2)dx = ?
Q10 |
-
∫
(csch(x)^2)dx = ?
Q11 |
-
∫
(sech(x)^2)dx = ?
Q12 |
-
∫
(coth(x)^2)dx = ?
Q13 |
-
∫
(sinh(x)*cosh(x))dx = ?
Q14 |
-
∫
(sinh(2*x))dx = ?
Answers
Q01.
∫
sinh(x)dx = cos(x) + C
Anti-derivative
Since we know that d/dx(cosh(x)) = sinh(x)
Hence d(cosh(x)) = sinh(x)dx
Hence cosh(x) =
∫
sinh(x)dx
Hence
∫
sinh(x)dx = cosh(x) + C
2nd method
∫
cosh(x)dx
=
∫
((exp^x + exp^(-x))/2)dx
= (exp^x - exp^(-x))/2
= sinh(x) + C
Go to Begin
Q02.
∫
cosh(x)dx = sinh(x) + C
Anti-derivative
Since we know that d/dx(sinh(x)) = cosh(x)
Hence d(sinh(x)) = cosh(x)dx
Hence sinh(x) =
∫
cosh(x)dx
Hence
∫
cosh(x)dx = sinh(x) + C
2nd method
∫
cosh(x)dx
=
∫
((exp^x + exp^(-x))/2)dx
= (exp^x - exp^(-x))/2
= sinh(x) + C
Go to Begin
Q03.
∫
tan(x)dx = ln(cosh(x)) + C
There is no anti-derivative
Since we know that d/dx(tan(x)) = sec(x)^2
Hence d(tan(x)) = (sec(x)^2)dx
Hence tan(x) =
∫
(sec(x)^2)dx
Hence
∫
(sec(x)^2)dx = tan(x) + C
We can not get intgration of tan(x) by anti-derivative
Porve that integration of tan(x) is -ln(cos(x))
tanh(x)dx = (sinh(x)dx)/cosh(x)
sinh(x)dx = d(cosh(x))
Let cosh(x) = u, then du = sinh(x)dx
Hence tanh(x)dx = du/u
Hence
∫
tanh(x)dx = ln(u) + C = ln(cosh(x)) + C
Verify
d/dx(ln(cosh(x)) + C) = (1/cosh(x))*(d/dx(cosh(x))) = sinh(x)/cosh(x) = tanh(x)
Go to Begin
Q04.
∫
csch(x)dx = ln(csch(x)) - coth(x))
It is hard to work from left to right. We will find d/dx(F(x)) = csch(x)
From right side, we prove d/dx(ln(csch(x) - coth(x)) = csch(x)
use chain rule and d/dx(ln(u)) = (1/u)*(du/dx)
d/dx(ln(csch(x) - coth(x))
= (1/(csch(x) - coth(x))*(d/dx(csch(x) - coth(x))
= (1/(csch(x) - coth(x))*(csch(x)*coth(x) - (csch(x)^2)
= (1/(csch(x) - coth(x))*(csch(x)*(coth(x) - csch(x))
= csch(x)
Hence csch(x)dx = d(ln(csch(x) - coth(x))
Hence
∫
csch(x)dx = ln(csch(x) - coth(x))
Go to Begin
Q05.
∫
sech(x)dx = ln(sech(x)) + tanh(x))
It is hard to work from left to right. We will find d/dx(F(x)) = sech(x)
From right side, we prove d/dx(ln(sec(x) + tan(x)) = sec(x)
use chain rule and d/dx(ln(u)) = (1/u)*(du/dx)
d/dx(ln(sech(x) + tanh(x))
= (1/(sech(x) + tanh(x))*(d/dx(sech(x) + tanh(x))
= (1/(sech(x) + tanh(x))*(sech(x)*tanh(x) + sech(x)^2)
= (1/(sech(x) + tanh(x))*(sech(x)*(tanh(x) + sech(x))
= sech(x)
Hence sech(x)dx = d(ln(sech(x) + tanh(x))
Hence
∫
sech(x)dx = ln(sech(x) + tanh(x))
Go to Begin
Q06.
∫
coth(x)dx = +ln(sinh(x)) + C There is no anti-derivative
Since we know that d/dx(coth(x)) = csch(x)^2
Hence d(coth(x)) = (ssch(x)^2)dx
Hence coth(x) =
∫
(csch(x)^2)dx
Hence
∫
(csch(x)^2)dx = coth(x) + C
We can not get intgration of coth(x) by anti-derivative
Porve that integration of coth(x) is ln(sinh(x))
coth(x)dx = (cosh(x)dx)/sinh(x)
cosh(x)dx = d(sinh(x))dx
Let sinh(x) = u and du = cosh(x)dx
Then coth(x)dx = du/u
Hence
∫
coth(x)dx = ln(u) + C = ln(sinh(x)) + C
Go to Begin
Q07.
∫
(sinh(x)^2)dx = ?
No anti-derivative is given
Use cosh(2*x) = 1 + 2*sinh(x)^2
Hence sinh(x)^2 = (1 + cosh(2*x))/2
∫
(sinh(x)^2)dx =
∫
((1 + cosh(2*x)/2)dx = x/2 + sinh(2*x)/4
Verify
d/dx(x/2 + sinh(2*x)/4) = 1/2 + (1/2)*cosh(2*x) = (1 + cosh(2*x))/2 = sinh(x)^2
Go to Begin
Q08.
∫
(cosh(x)^2)dx = ?
No anti-derivative is given
Use cosh(2*x) = 2*cosh(x)^2 - 1
Hence cosh(x)^2 = (1 + cosh(2*x))/2
∫
(cosh(x)^2)dx =
∫
((1 + cosh(2*x)/2)dx = x/2 + sinh(2*x)/4
Verify
d/dx(x/2 + sinh(2*x)/4) = 1/2 + (1/2)*cosh(2*x) = (1 + cosh(2*x))/2 = cosh(x)^2
Go to Begin
Q09.
∫
(tanh(x)^2)dx = ?
No anti-derivative is given
Use 1 + tanh(x)^2 = sech(x)^2 and d/dx(tanh(x)) = sech(x)^2
Hence tanh(x)^2 = sech(2*x)^2 - 1
∫
(tanh(x)^2)dx =
∫
((sech(x)^2 - 1)dx = tanh(x) - x
Verify
d/dx(tanh(x) - x) = sech(x)^2 - 1 = tanh(x)^2
Go to Begin
Q10.
∫
(csch(x)^2)dx = ?
There is anti-derivative.
Since d/dx(coth(x)) = csch(x)^2
Hence d(coth(x)) = (csch(2*x)^2)dx
∫
(csch(x)^2)dx = coth(x) + C
Verify
d/dx(coth(x)) = csch(x)^2
Go to Begin
Q11.
∫
(sech(x)^2)dx = ?
There is anti-derivative.
Since d/dx(tanh(x)) = sech(x)^2
Hence d(tanh(x)) = (sech(2*x)^2)dx
∫
(sech(x)^2)dx = tanh(x) + C
Verify
d/dx(tanh(x)) = sech(x)^2
Go to Begin
Q12.
∫
(coth(x)^2)dx = ?
No anti-derivative is given
Use 1 + coth(x)^2 = csch(x)^2 and d/dx(coth(x)) = csch(x)^2
Hence coth(x)^2 = csch(x)^2 - 1
∫
(coth(x)^2)dx =
∫
((csch(x)^2 - 1)dx = coth(x) - x
Verify
d/dx(coth(x) - x) = csch(x)^2 - 1 = coth(x)^2
Go to Begin
Q13.
∫
(sinh(x)*cosh(x))dx = ?
No anti-derivative is given
Let u = sinh(x) and then du = cosh(x)dx
Hence the integrant (sinh(x)*cosh(x))dx = udu
∫
(sinh(x)*cosh(x))dx =
∫
udu = u^2/2 = (sinh(x)^2)/2 + C
Verify
d/dx((sinh(x)^2/)/2) = 2*sinh(x)*cosh(x)/2 = sinh(x)*cosh(x)
Second method :
∫
(sin(x)*cos(x))dx = ?
Let u = cosh(x) and then du = sinh(x)dx
Hence the integrant (sinh(x)*cosh(x))dx = -udu
∫
(sinh(x)*cosh(x))dx =
∫
udu = u^2/2 = (cosh(x)^2)/2 + C
Verify
d/dx((cosh(x)^2/)/2) = 2*cosh(x)*(sinh(x))/2 = sinh(x)*cosh(x)
Formula
1.
∫
(sinh(x)^n)*cos(x)dx = (cos(x)^(n+1))/(n+1)
2.
∫
(cosh(x)^n)*sin(x)dx = (sin(x)^(n+1))/(n+1)
Go to Begin
Q14.
∫
(sinh(2*x))dx = ?
No anti-derivative is given
Let u = 2*x and du = 2*dx
Hence the integant is sinh(u)*(1/2)du
∫
(sinh(2*x))dx =
∫
(sinh(u)(1/2)du = cosh(u)/2 = cosh(2*x)/2 + C
Verify
d/dx(cosh(2*x)/2) = (2*sinh(2*x))/2 = sinh(2*x)
Example :
∫
(cosh(2*x))dx = ?
No anti-derivative is given
Let u = 2*x and du = 2*dx
Hence the integant is cosh(u)*(1/2)du
∫
(cosh(2*x))dx =
∫
(cosh(u)(1/2)du = sinh(u)/2 = sinh(2*x)/2 + C
Verify
d/dx(sinh(2*x)/2) = (2*cosh(2*x))/2 = cosh(2*x)
Formula
1.
∫
(sinh(n*x))dx = cos(n*x)/(n+1)
2.
∫
(cosh(n*x))dx = sin(n*x)/(n+1)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.