Mathematics Dictionary
Dr. K. G. Shih
Integral : Inverse hyperbolic functions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
Q01 |
-
∫
arcsinh(x)dx = x*arcsinh(x) - Sqr(1 + x^2)
Q02 |
-
∫
arccosh(x)dx =x*arccosh(x) - Sqr(x^2 - 1)
Q03 |
-
∫
arctanh(x)dx = x*arctanh(x) - ln(1 - x^2)
Q04 |
-
∫
arccsch(x)dx = x*arccsch(x) - ln(x + Sqr(x^2 + 1)
Q05 |
-
∫
arcsech(x)dx = x*arcsech(x) - ln(x + Sqr(1 - x^2)
Q06 |
-
∫
arccot(x)dx = x*arccot(x) + ln(x^2 - 1)
Q07 |
-
∫
(1/Sqr(1 - x^2))dx = arcsin(x)
Q08 |
-
∫
(-1/Sqr(1 - x^2))dx = arccos(x)
Q09 |
-
∫
(1/(1 + x^2))dx =arctan(x)
Q10 |
-
∫
(-1/(x*Sqr(x^2 - 1)))dx = arccsc(x)
Q11 |
-
∫
(1/(x*Sqr(x^2 - 1)))dx = arcsec(x)
Q12 |
-
∫
(-/(1 + x^2))dx = arccot(x)
Q13 |
-
∫
(sin(x)*cos(x))dx = ?
Q14 |
-
∫
(sin(2*x))dx = ?
Answers
Q01.
∫
arcsinh(x)dx = x*arcsinh(x)- Sqr(1 + x^2)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arcsinh(x) and du = (1/Sqr(1 + x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arcsinh(x) -
∫
(x/Sqr(1+x^2))dx
Find Integral =
∫
(x/Sqr(1+x^2))dx
Let w = 1 + x^2 and dw = 2*xdx
Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))Sqr(w) = Sqr(1 + x^2)
Hence
∫
arcsinh(x)dx = x*arcsinh(x) - Sqr(1 + x^2)
Go to Begin
Q02.
∫
arccosh(x)dx = x*arccosh(x) - Sqr(x^2 - 1)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arccosh(x) and du = (-1/Sqr(x^2 - 1))dx
Integral = u*v -
∫
v*du
Integral = x*arccosh(x) -
∫
(-x/Sqr(x^2 - 1))dx
Find Integral =
∫
(-x/Sqr(x^2 - 1))dx
Let w = x^2 - 1 and dw = 2*xdx
Hence integrant = (-1/(2*Sqr(w))dw = (-1/2)*(1/(-1/2+1)Sqr(w) = Sqr(x^2 - 1)
Hence
∫
arccosh(x)dx = x*arccosh(x) - Sqr(x^2 - 1)
Go to Begin
Q03.
∫
arctanh(x)dx = x*arctanh(x) - (ln(1 - x^2))/2
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arctanh(x) and du = (1/(1 - x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arctanh(x) -
∫
(x/(1 - x^2))dx
Find Integral =
∫
(x/(1 - x^2))dx
Let w = x^2 - 1 and dw = 2*xdx
Hence integrant = (1/2)*(1/(w))dw = (1/2)*(ln(w) = ln(1 - x^2)/2
Hence
∫
arctanh(x)dx = x*arctanh(x) - ln(1 - x^2)/2
Go to Begin
Q04.
∫
arccsch(x)dx = x*arccsch(x) - ln(x + Sqr(x^2 + 1)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arccsch(x) and du = (-1/(x*Sqr(x^2 + 1)))dx
Integral = u*v -
∫
v*du
Integral = x*arccsch(x) -
∫
(-1/2)/Sqr(x^2 + 1))dx
Find Integral =
∫
(1/2)/Sqr(x^2 - 1))dx
Let w = x^2 + 1 and dw = 2*xdx
Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(x^2 + 1)
Hence
∫
arccsch(x)dx = x*arccsch(x) - Sqr(x^2 + 1)
Also
∫
arctanh(x)dx = x*arccsch(x) + arcsinh(x)
Verify
d/dx(x*arccsch(x) + Sqr(x^2 - 1)
= arccsch(x) + x*(-1/(x*Sqr(x^2 - 1))) + (2*x)/(2*Sqr(x^2 - 1)
= arccsch(x)
Verify : the formula in title
d/dx(x*arccsc(x) + ln(x + Sqr(x^2 + 1))
= arccsch(x) + x/(-x*Sqr(x^2 - 1)) + (1/(x + Sqr(x^2 - 1))*(d/dx(x + Sqr(x^2 - 1)
= arccsch(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(1 + x/Sqr(x^2 - 1))
= arccsch(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(Sqr(x^2 - 1) + x)/Sqr(x^2 - 1))
= arccsch(x) - 1/Sqr(x^2 - 1) + (1/Sqr(x^2 - 1))
= arccsch(x)
Go to Begin
Q05.
∫
arcsech(x)dx = x*arcsech(x) - ln(x + Sqr(1 - x^2)
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arcsech(x) and du = (-1/(x*Sqr(1 - x^2)))dx
Integral = u*v -
∫
v*du
Integral = x*arcsech(x) -
∫
(1/2)/Sqr(1 - x^2))dx
Find Integral =
∫
(1/2)/Sqr(1 - x^2))dx
Let w = 1 - x^2 and dw = -2*xdx
Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(1 - x^2)
Hence
∫
arcsec(x)dx = x*arcsec(x) - Sqr(1 - x^2)
Also
∫
arctanh(x)dx = x*arcsech(x) + arcsin(x)
Verify
d/dx(x*arcsech(x) - Sqr(1 - x^2)
= arcsech(x) + x*(-1/(x*Sqr(x^2 - 1))) - (2*x)/(2*Sqr(1 - x^2)
= arcsech(x)
Verify : the formula in title
d/dx(x*arcsech(x) - ln(x + Sqr(1 - x^2))
= arcsech(x) + x/(x*Sqr(1 - x^2)) - (1/(x + Sqr(1 - x^2))*(d/dx(x + Sqr(1 - x^2)
= arcsech(x) + 1/Sqr(1 - x^2) - (1/(x + Sqr(1 - x^2)))*(1 + x/Sqr(x^2 - 1))
= arcsech(x) + 1/Sqr(1 - x^2) - (1/(x + Sqr(1 - x^2)))*(Sqr(1 - x^2) + x)/Sqr(1 - x^2))
= arcsech(x) + 1/Sqr(1 - x^2) - (1/Sqr(1 - x^2))
= arcsech(x)
Go to Begin
Q06.
∫
arccoth(x)dx = x*arccoth(x) + (ln(1 - x^2))/2
Proof : Use integral by part
Integral by part
Let dv = dx and v = x
Let u = arccoth(x) and du = (1/(1 - x^2))dx
Integral = u*v -
∫
v*du
Integral = x*arccoth(x) -
∫
(x/(1 - x^2))dx
Find Integral =
∫
(x/(1 - x^2))dx
Let w = 1 - x^2 and dw = -2*xdx
Hence integrant = (-1/2)*(1/(w))dw = (-1/2)*(ln(w) = -ln(1 - x^2)/2
Hence
∫
arccoth(x)dx = x*arccoth(x) + ln(1 - x^2)/2
Go to Begin
Q07.
∫
(1/Sqr(1 + x^2))dx = arcsinh(x)
Use anti-derivative : d/dx(arcsin(x)) = 1/Sqr(1 + x^2)
d(arcsin(x)) = (1/Sqr(1 + x^2))dx
Hence integral of (1/Sqr(1 + x^2))dx = arcsinh(x)
Second method
Let x = sinh(U) then dx = cosh(U)dU and U = arcsinh(x)
Hence (1/Sqr(1 + x^2)*dx = (1/Sqr(1 + sinh(U)^2))*(cosh(U))dU
Since cosh(U)^2 - sinh(U)^2 = 1
Hence (1/Sqr(1 + x^2)*dx = dU
Hence
∫
(1/Sqr(1 + x^2))dx =
∫
dU = U = arcsinh(x) + C
Go to Begin
Q08.
∫
(1/Sqr(x^2 - 1))dx = arccosh(x)
Use anti-derivative : d/dx(arccosh(x)) = 1/Sqr(x^2 - 1)
d(arccosh(x)) = (1/Sqr(x^2 - 1))dx
Hence integral of (1/Sqr(x^2 - 1))dx = arccosh(x)
Second method
Let x = cosh(U) then dx = sinh(U)dU and U = arccosh(x)
Hence (1/Sqr(x^2 - 1)*dx = (1/Sqr(cos(U)^2 - 1))*(-sinh(U))dU
Since cosh(U)^2 - 1 = sinh(U)^2
Hence (1/Sqr(x^2 - 1)*dx = dU
Hence
∫
(1/Sqr(x^2 - 1))dx =
∫
dU = U = arccosh(x) + C
Go to Begin
Q09.
∫
(1/(1 - x^2))dx = arctanh(x)
Use derivative d/dx(arctanh(x)) = 1/(1 - x^2)
d(arctanh(x)) = (1/(1 - x^2))dx
Hence integral of (1/(1 - x^2))dx = arctanh(x)
Second method
Let x = tanh(U) then dx = sech(U)^2)dU and U = arctanh(x)
Hence (1/(1 - x^2)*dx = (1/(1 - tanh(U)^2))*(sech(U)^2)dU
Since 1 - tanh(U)^2 = sech(U)^2
Hence (1/(1 + x^2)*dx = dU
Hence
∫
(1/(1 - x^2))dx =
∫
dU = U = arctanh(x) + C
Go to Begin
Q10.
∫
(csch(x)^2)dx = ?
There is anti-derivative.
Since d/dx(coth(x)) = -csch(x)^2
Hence d(coth(x)) = (-csch(2*x)^2)dx
∫
(-csc(x)^2)dx = coth(x) + C
Verify
d/dx(coth(x)) = -csch(x)^2
Go to Begin
Q11.
∫
(sech(x)^2)dx = ?
There is anti-derivative.
Since d/dx(tanh(x)) = sech(x)^2
Hence d(tanh(x)) = (sech(2*x)^2)dx
∫
(sech(x)^2)dx = tanh(x) + C
Verify
d/dx(tanh(x)) = sech(x)^2
Go to Begin
Q12.
∫
(1/(1 - x^2))dx = arccoth(x)
Use derivative d/dx(arccoth(x)) = 1/(1 - x^2)
d(arccoth(x)) = (1/(1 - x^2))dx
Hence integral of (1/(1 - x^2))dx = arccoth(x)
Second method
Let x = coth(U) then dx = (-csch(U)^2)dU and U = arccoth(x)
Hence (-1/(1 - x^2)*dx = (1/(1 - coth(U)^2))*(-csch(U)^2)dU
Since 1 - coth(U)^2 = csch(U)^2
Hence (-1/(1 - x^2)*dx = dU
Hence
∫
(-1/(1 - x^2))dx =
∫
dU = U = arccoth(x) + C
Go to Begin
Q13. New
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.