Counter
Mathematics Dictionary
Dr. K. G. Shih

Integral : Inverse hyperbolic functions
Subjects

    Symbol Defintion
    Example : Sqr(x) is square root of x

  • Q01 | - arcsinh(x)dx = x*arcsinh(x) - Sqr(1 + x^2)
  • Q02 | - arccosh(x)dx =x*arccosh(x) - Sqr(x^2 - 1)
  • Q03 | - arctanh(x)dx = x*arctanh(x) - ln(1 - x^2)
  • Q04 | - arccsch(x)dx = x*arccsch(x) - ln(x + Sqr(x^2 + 1)
  • Q05 | - arcsech(x)dx = x*arcsech(x) - ln(x + Sqr(1 - x^2)
  • Q06 | - arccot(x)dx = x*arccot(x) + ln(x^2 - 1)
  • Q07 | - (1/Sqr(1 - x^2))dx = arcsin(x)
  • Q08 | - (-1/Sqr(1 - x^2))dx = arccos(x)
  • Q09 | - (1/(1 + x^2))dx =arctan(x)
  • Q10 | - (-1/(x*Sqr(x^2 - 1)))dx = arccsc(x)
  • Q11 | - (1/(x*Sqr(x^2 - 1)))dx = arcsec(x)
  • Q12 | - (-/(1 + x^2))dx = arccot(x)
  • Q13 | - (sin(x)*cos(x))dx = ?
  • Q14 | - (sin(2*x))dx = ?

Answers


Q01. arcsinh(x)dx = x*arcsinh(x)- Sqr(1 + x^2)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arcsinh(x) and du = (1/Sqr(1 + x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arcsinh(x) - (x/Sqr(1+x^2))dx
  • Find Integral = (x/Sqr(1+x^2))dx
    • Let w = 1 + x^2 and dw = 2*xdx
    • Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))Sqr(w) = Sqr(1 + x^2)
  • Hence arcsinh(x)dx = x*arcsinh(x) - Sqr(1 + x^2)

Go to Begin

Q02. arccosh(x)dx = x*arccosh(x) - Sqr(x^2 - 1)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arccosh(x) and du = (-1/Sqr(x^2 - 1))dx
    • Integral = u*v - v*du
    • Integral = x*arccosh(x) - (-x/Sqr(x^2 - 1))dx
  • Find Integral = (-x/Sqr(x^2 - 1))dx
    • Let w = x^2 - 1 and dw = 2*xdx
    • Hence integrant = (-1/(2*Sqr(w))dw = (-1/2)*(1/(-1/2+1)Sqr(w) = Sqr(x^2 - 1)
  • Hence arccosh(x)dx = x*arccosh(x) - Sqr(x^2 - 1)

Go to Begin

Q03. arctanh(x)dx = x*arctanh(x) - (ln(1 - x^2))/2

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arctanh(x) and du = (1/(1 - x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arctanh(x) - (x/(1 - x^2))dx
  • Find Integral = (x/(1 - x^2))dx
    • Let w = x^2 - 1 and dw = 2*xdx
    • Hence integrant = (1/2)*(1/(w))dw = (1/2)*(ln(w) = ln(1 - x^2)/2
  • Hence arctanh(x)dx = x*arctanh(x) - ln(1 - x^2)/2

Go to Begin

Q04. arccsch(x)dx = x*arccsch(x) - ln(x + Sqr(x^2 + 1)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arccsch(x) and du = (-1/(x*Sqr(x^2 + 1)))dx
    • Integral = u*v - v*du
    • Integral = x*arccsch(x) - (-1/2)/Sqr(x^2 + 1))dx
  • Find Integral = (1/2)/Sqr(x^2 - 1))dx
    • Let w = x^2 + 1 and dw = 2*xdx
    • Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(x^2 + 1)
  • Hence arccsch(x)dx = x*arccsch(x) - Sqr(x^2 + 1)
  • Also arctanh(x)dx = x*arccsch(x) + arcsinh(x)
Verify
  • d/dx(x*arccsch(x) + Sqr(x^2 - 1)
  • = arccsch(x) + x*(-1/(x*Sqr(x^2 - 1))) + (2*x)/(2*Sqr(x^2 - 1)
  • = arccsch(x)
Verify : the formula in title
  • d/dx(x*arccsc(x) + ln(x + Sqr(x^2 + 1))
  • = arccsch(x) + x/(-x*Sqr(x^2 - 1)) + (1/(x + Sqr(x^2 - 1))*(d/dx(x + Sqr(x^2 - 1)
  • = arccsch(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(1 + x/Sqr(x^2 - 1))
  • = arccsch(x) - 1/Sqr(x^2 - 1) + (1/(x + Sqr(x^2 - 1)))*(Sqr(x^2 - 1) + x)/Sqr(x^2 - 1))
  • = arccsch(x) - 1/Sqr(x^2 - 1) + (1/Sqr(x^2 - 1))
  • = arccsch(x)

Go to Begin

Q05.arcsech(x)dx = x*arcsech(x) - ln(x + Sqr(1 - x^2)

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arcsech(x) and du = (-1/(x*Sqr(1 - x^2)))dx
    • Integral = u*v - v*du
    • Integral = x*arcsech(x) - (1/2)/Sqr(1 - x^2))dx
  • Find Integral = (1/2)/Sqr(1 - x^2))dx
    • Let w = 1 - x^2 and dw = -2*xdx
    • Hence integrant = (1/(2*Sqr(w))dw = (1/2)*(1/(-1/2+1))*Sqr(w) = Sqr(1 - x^2)
  • Hence arcsec(x)dx = x*arcsec(x) - Sqr(1 - x^2)
  • Also arctanh(x)dx = x*arcsech(x) + arcsin(x)
Verify
  • d/dx(x*arcsech(x) - Sqr(1 - x^2)
  • = arcsech(x) + x*(-1/(x*Sqr(x^2 - 1))) - (2*x)/(2*Sqr(1 - x^2)
  • = arcsech(x)
Verify : the formula in title
  • d/dx(x*arcsech(x) - ln(x + Sqr(1 - x^2))
  • = arcsech(x) + x/(x*Sqr(1 - x^2)) - (1/(x + Sqr(1 - x^2))*(d/dx(x + Sqr(1 - x^2)
  • = arcsech(x) + 1/Sqr(1 - x^2) - (1/(x + Sqr(1 - x^2)))*(1 + x/Sqr(x^2 - 1))
  • = arcsech(x) + 1/Sqr(1 - x^2) - (1/(x + Sqr(1 - x^2)))*(Sqr(1 - x^2) + x)/Sqr(1 - x^2))
  • = arcsech(x) + 1/Sqr(1 - x^2) - (1/Sqr(1 - x^2))
  • = arcsech(x)

Go to Begin

Q06. arccoth(x)dx = x*arccoth(x) + (ln(1 - x^2))/2

Proof : Use integral by part
  • Integral by part
    • Let dv = dx and v = x
    • Let u = arccoth(x) and du = (1/(1 - x^2))dx
    • Integral = u*v - v*du
    • Integral = x*arccoth(x) - (x/(1 - x^2))dx
  • Find Integral = (x/(1 - x^2))dx
    • Let w = 1 - x^2 and dw = -2*xdx
    • Hence integrant = (-1/2)*(1/(w))dw = (-1/2)*(ln(w) = -ln(1 - x^2)/2
  • Hence arccoth(x)dx = x*arccoth(x) + ln(1 - x^2)/2

Go to Begin

Q07. (1/Sqr(1 + x^2))dx = arcsinh(x)

Use anti-derivative : d/dx(arcsin(x)) = 1/Sqr(1 + x^2)
  • d(arcsin(x)) = (1/Sqr(1 + x^2))dx
  • Hence integral of (1/Sqr(1 + x^2))dx = arcsinh(x)
Second method
  • Let x = sinh(U) then dx = cosh(U)dU and U = arcsinh(x)
  • Hence (1/Sqr(1 + x^2)*dx = (1/Sqr(1 + sinh(U)^2))*(cosh(U))dU
  • Since cosh(U)^2 - sinh(U)^2 = 1
  • Hence (1/Sqr(1 + x^2)*dx = dU
  • Hence (1/Sqr(1 + x^2))dx = dU = U = arcsinh(x) + C

Go to Begin

Q08. (1/Sqr(x^2 - 1))dx = arccosh(x)

Use anti-derivative : d/dx(arccosh(x)) = 1/Sqr(x^2 - 1)
  • d(arccosh(x)) = (1/Sqr(x^2 - 1))dx
  • Hence integral of (1/Sqr(x^2 - 1))dx = arccosh(x)
Second method
  • Let x = cosh(U) then dx = sinh(U)dU and U = arccosh(x)
  • Hence (1/Sqr(x^2 - 1)*dx = (1/Sqr(cos(U)^2 - 1))*(-sinh(U))dU
  • Since cosh(U)^2 - 1 = sinh(U)^2
  • Hence (1/Sqr(x^2 - 1)*dx = dU
  • Hence (1/Sqr(x^2 - 1))dx = dU = U = arccosh(x) + C

Go to Begin

Q09. (1/(1 - x^2))dx = arctanh(x)

Use derivative d/dx(arctanh(x)) = 1/(1 - x^2)
  • d(arctanh(x)) = (1/(1 - x^2))dx
  • Hence integral of (1/(1 - x^2))dx = arctanh(x)
Second method
  • Let x = tanh(U) then dx = sech(U)^2)dU and U = arctanh(x)
  • Hence (1/(1 - x^2)*dx = (1/(1 - tanh(U)^2))*(sech(U)^2)dU
  • Since 1 - tanh(U)^2 = sech(U)^2
  • Hence (1/(1 + x^2)*dx = dU
  • Hence (1/(1 - x^2))dx = dU = U = arctanh(x) + C

Go to Begin

Q10. (csch(x)^2)dx = ?

There is anti-derivative.
  • Since d/dx(coth(x)) = -csch(x)^2
  • Hence d(coth(x)) = (-csch(2*x)^2)dx
  • (-csc(x)^2)dx = coth(x) + C
Verify
  • d/dx(coth(x)) = -csch(x)^2

Go to Begin

Q11. (sech(x)^2)dx = ?

There is anti-derivative.
  • Since d/dx(tanh(x)) = sech(x)^2
  • Hence d(tanh(x)) = (sech(2*x)^2)dx
  • (sech(x)^2)dx = tanh(x) + C
Verify
  • d/dx(tanh(x)) = sech(x)^2

Go to Begin

Q12. (1/(1 - x^2))dx = arccoth(x)

Use derivative d/dx(arccoth(x)) = 1/(1 - x^2)
  • d(arccoth(x)) = (1/(1 - x^2))dx
  • Hence integral of (1/(1 - x^2))dx = arccoth(x)
Second method
  • Let x = coth(U) then dx = (-csch(U)^2)dU and U = arccoth(x)
  • Hence (-1/(1 - x^2)*dx = (1/(1 - coth(U)^2))*(-csch(U)^2)dU
  • Since 1 - coth(U)^2 = csch(U)^2
  • Hence (-1/(1 - x^2)*dx = dU
  • Hence (-1/(1 - x^2))dx = dU = U = arccoth(x) + C

Go to Begin

Q13. New


Go to Begin


Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1