Mathematics Dictionary
Dr. K. G. Shih
Integral : Partial fractions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
Q01 |
- Partial fraction
Q02 |
-
∫
(1/(1 - x^2))dx
Q03 |
-
Q04 |
-
Q05 |
-
Q06 |
-
Q07 |
-
Q08 |
-
Q09 |
-
Q10 |
-
Answers
Q01. Partial frction
Partial fraction
Subects |
Partial fractin
Go to Begin
Q02.
∫
(1/(1 - x^2))dx
Express 1/(1 - x^2) = A/(1 - x) + B/(1 + x)
Both sides times (1 - x^2)
We have 1 = A*(1 + x) + B*(1 - x)
or 1 = (A - B)*x + (A + B)
Hence A - B = 0 and A + B = 1
Hence A = B = 1/2
Find integral
∫
(1/(1 - x^2))dx
=
∫
(1/2)*(1/(1 - x) + 1/(1 + x))dx
= (1/2)*(ln(1 + x) - ln(1 - x)) + C
= (1/2)*ln((1 + x)/(1 - x)) + C
Verify
d/dx(ln(1 + x)/(1 - x)) = ((1 - x)/(1 + x))*d/dx((1 + x)/(1 - x))
= ((1 - x)/(1 + x))*((1 - x) + (1 + x))/(1 - x^2))
= ((1 - x)/(1 + x))*(2/(1 - x^2))
= 1/((1 - x)*(1 + x))
= 1/(1 - x^2)
Prove that
∫
(1/(1 - x^2))dx = arctanh(x)
derivative : d/dx(arctnah(x) = 1/(1 - x^2) : See 06 04
Integral : See 14 09
Go to Begin
Q03.
Go to Begin
Q04.
1. Join mid points of two sides which is parallel to other side
Go to Begin
Q05.
Go to Begin
Q06. New
Go to Begin
Q07. Answer
Go to Begin
Q08. Answer
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.