Counter
Mathematics Dictionary
Dr. K. G. Shih

Integral : Partial fractions
Subjects


Answers


Q01. Partial frction

Partial fraction

Go to Begin

Q02. (1/(1 - x^2))dx

Express 1/(1 - x^2) = A/(1 - x) + B/(1 + x)
  • Both sides times (1 - x^2)
  • We have 1 = A*(1 + x) + B*(1 - x)
  • or 1 = (A - B)*x + (A + B)
  • Hence A - B = 0 and A + B = 1
  • Hence A = B = 1/2
Find integral
  • (1/(1 - x^2))dx
  • = (1/2)*(1/(1 - x) + 1/(1 + x))dx
  • = (1/2)*(ln(1 + x) - ln(1 - x)) + C
  • = (1/2)*ln((1 + x)/(1 - x)) + C
Verify
  • d/dx(ln(1 + x)/(1 - x)) = ((1 - x)/(1 + x))*d/dx((1 + x)/(1 - x))
  • = ((1 - x)/(1 + x))*((1 - x) + (1 + x))/(1 - x^2))
  • = ((1 - x)/(1 + x))*(2/(1 - x^2))
  • = 1/((1 - x)*(1 + x))
  • = 1/(1 - x^2)
Prove that (1/(1 - x^2))dx = arctanh(x)
  • derivative : d/dx(arctnah(x) = 1/(1 - x^2) : See 06 04
  • Integral : See 14 09

Go to Begin

Q03.


Go to Begin

Q04.

1. Join mid points of two sides which is parallel to other side

Go to Begin

Q05.


Go to Begin

Q06. New

Go to Begin

Q07. Answer

Go to Begin

Q08. Answer

Go to Begin

Q09. Answer

Go to Begin

Q10. Answer

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1