Counter
Mathematics Dictionary
Dr. K. G. Shih

Integral : Rational and irrational functions
Subjects


Answers


CA 16 01. Basic formula from anti-derivative

Integrals of ration function from anti-differentiation
  • (1/(1 + x^2))dx = arctan(x)
  • (1/(1 - x^2))dx = arctanh(x)
Integrals of ir-ration function from anti-differentiation
  • (1/Sqr(1 - x^2))dx = arcsin(x)
  • (1/Sqr(1 + x^2))dx = arcsinh(x)
  • (1/(x*Sqr(x^2 - 1))dx = arcsec(x)
  • (1/(x*Sqr(1 - x^2))dx = arcsech(x)

Go to Begin

CA 16 02. (1/(a + b*x^2))dx = Sqr(1/a*b)*arctan(sqr(b/a)*x)

  • 1/(a + b*x^2) = (1/a)/(1 + (b/a)*(x^2))
  • Let Sqr(b/a)*x = u, then du =Sqr(b/a)dx
  • Hence integral = (1/Sqr(b/a))*((1/a)/(1 + u^2)))du
  • = (1/(Sqr(b/a)*a))*arctan(u)
  • = (Sqr(a/b)/a)*arctan(Sqr(b/a)*x) + c
  • = Sqr(1/a*b)*arctan(Sqr(b/a)*x) + c

Go to Begin

CA 16 03. (1/Sqr(a - b*x^2))dx = Sqr(1/a*b)*arcsin(sqr(b/a)*x)

  • 1/Sqr(a - b*x^2) = (1/a)/(1 - (b/a)*(x^2))
  • Let Sqr(b/a)*x = u, then du =Sqr(b/a)dx
  • Hence integral = (1/Sqr(b/a))*((1/a)/Sqr(1 - u^2)))du
  • = (1/(Sqr(b/a)*a))*arcsin(u)
  • = (Sqr(a/b)/a)*arcsin(Sqr(b/a)*x) + c
  • = Sqr(1/a*b)*arcsin(Sqr(b/a)*x) + c

Go to Begin

CA 16 04. (1/(a*x^2 + b*x + c))dx = A/(x+B) : case 1

Case 1 : b^2 - 4*a*c = 0
  • (1/(a*x^2 + b*x + c))dx = A/(x + B)
  • Find A and B
    • Using completing the square
    • (a*x^2 + b*x + c) = a*(x^2 + b*x/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a)
    • = a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a)
    • Since b^2 - 4*a*c = 0
    • Hence (a*x^2 + b*x + c)= a*(x + b/(2*a))^2 since b^2 - 4*a*c = 0
    • x + b/(2*a) = u and du = dx
    • (1/(a*x^2 + b*x + c))dx
    • = (1/a)*(1/u^2)du
    • = (1/a)*(-2+1)*u^(-1)
    • = -1/(x + b/(2*a))
    • Hence A = -1/a and B = b/(2*a)
Example : Find (1/(x^2 + 4*x + 4))dx
  • Since x^2 + 4*x + 4 = (x + 2)^2
  • Hence (1/(x^2 + 4*x + 4))dx (1/(x + 2)^2)dx
  • = -1/(x + 2)
b^2 - 4*a*c GT 0
  • (1/(a*x^2 + b*x + c))dx = A*ln(x + B)+C*ln(x - B)
  • Find A, B and C

Go to Begin

CA 16 05. (1/(a*x^2 + b*x + c))dx = A*arctan(B*(x+C)) : case 2

Case 2 : b^2 - 4*a*c LT 0
  • (1/(a*x^2 + b*x + c))dx = A*arctan(B*(x + C))
  • Find A and B
    • Using completing the square
    • (a*x^2 + b*x + c) = a*(x^2 + b*x/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a)
    • = a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a)
    • Since b^2 - 4*a*c LT 0
    • Hence (a*x^2 + b*x + c)= a*(x + b/(2*a))^2 + D where D = -(b^2 - 4*a*c)/(4*a)
    • x + b/(2*a) = u and du = dx
    • (1/(a*x^2 + b*x + c))dx
    • = (1/(D + a*u^2)du
    • = (1/Sqr(a*D)*arctan(Sqr(D/a)*u)
    • = (1/Sqr(a*D)*arctan(Sqr(D/a)*(x + b/(2*a))
    • Hence A = 1/Sqr(a*D), B = Sqr(D/a) and C = b/(2*a)
Example : Find (1/(x^2 + 4*x + 5))dx
  • Since x^2 + 4*x + 5 = (x + 2)^2 + 1
  • Hence (1/(x^2 + 4*x + 4))dx (1/(1 + (x + 2)^2)dx
  • = arctan(x + 2)

Go to Begin

CA 16 06. (1/(a*x^2 + b*x + c))dx = A*ln(x+B) + C*ln(x+D) : case 3

Case 2 : b^2 - 4*a*c GT 0
  • (1/(a*x^2 + b*x + c))dx = A*ln(x+B) + C*ln(x+D)
  • Find A, B, C and D
    • Using completing the square
    • (a*x^2 + b*x + c) = a*(x^2 + b*x/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a)
    • = a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a)
    • Since b^2 - 4*a*c LT 0
    • Hence (a*x^2 + b*x + c)= a*(x + b/(2*a))^2 - D where D = (b^2 - 4*a*c)/(4*a)
    • x + b/(2*a) = u and du = dx
    • (1/(a*x^2 + b*x + c))dx
    • =(1/a)*(1/(D/a - u^2)du
    • = (1/a)*(E/(Sqr(D/a) + u) + F/(Sqr(D/a) - u))du
    • = (E*ln(Sqr(D/a) + u) + F*ln(Sqr(D/a) - u))/a
    • = (E/a)*ln(Sqr(D/a) + (x+b/(2*a))) + (F/a)*ln(Sqr(D/a) - (x+b/(2*a)))
    • Hence A = E/a, B = Sqr(D/a) + b/(2*a), C = F/a and B = Sqr(D/a) - b/(2*a)
    • Where E and F can be found by partial fraction
Example : Find (1/(x^2 - 3*x + 2))dx
  • Since x^2 - 3*x + 2 = (x - 1)*(x - 2)
  • Hence (1/(x^2 + 4*x + 4))dx (1/((x - 1)*(x - 2))dx
  • Using partial faction :
    • 1/((x-1)*(x-2)) = A/(x - 1) + B/(x - 2)
    • Multiply both sides by (x-1)*(x-2)
    • 1 = A*(x - 2) + B*(x - 1)
    • 1 = (A+B)*x - (2*A + B)
    • Hence A+B = 0 and 2*A + B = 1
    • Hence A = -B and 2*(-B) + B = 1. Hence B = -1 and A = 1
  • (1/(x^2 - 3*x + 2))dx
  • = (1/(x - 1) - 1/(x - 2))dx
  • = ln(x - 1) + ln(x - 2)

Go to Begin

CA 16 07. Answer

Go to Begin

CA 16 08. Answer

Go to Begin

CA 16 09. Answer


Go to Begin

CA 16 10. Answer


Go to Begin

CA 16 00. Outline

Integrals of ration function from anti-differentiation
  • (1/(1 + x^2))dx = arctan(x)
  • (1/(1 - x^2))dx = arctanh(x)
Integrals of ir-ration function from anti-differentiation
  • (1/Sqr(1 - x^2))dx = arcsin(x)
  • (1/Sqr(1 + x^2))dx = arcsinh(x)
  • (1/(x*Sqr(x^2 - 1))dx = arcsec(x)
  • (1/(x*Sqr(1 - x^2))dx = arcsech(x)
Integral formulae
  • 1. (1/(a + b*x^2))dx = Sqr(1/a*b)*arctan(sqr(b/a)*x)
  • 2. (1/(a + b*x^2))dx = Sqr(1/a*b)*arcsin(sqr(b/a)*x)
  • 3. (1/(a*x^2 + b*x + c))dx = A/(x + B)
  • 4. (1/(a*x^2 + b*x + c))dx = A*arctan(B*x)
  • 5. (1/(a*x^2 + b*x + c))dx = A*ln(x-B)+B*ln(x-C)

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1