Mathematics Dictionary
Dr. K. G. Shih
Integral : Rational and irrational functions
Subjects
Symbol Defintion
Example : Sqr(x) is square root of x
CA 16 00 |
- Outlines
CA 16 01 |
- Basic formula from anti-derivative
CA 16 02 |
-
∫
(1/(a + b*x^2))dx = Sqr(1/a*b)*arctan(sqr(b/a)*x)
CA 16 03 |
-
∫
(1/Sqr(a - b*x^2))dx = Sqr(1/a*b)*arcsin(sqr(b/a)*x)
CA 16 04 |
-
∫
(1/(a*x^2 + b*x + c))dx : Case 1
CA 16 05 |
-
∫
(1/(a*x^2 + b*x + c))dx : Case 2
CA 16 06 |
-
∫
(1/(a*x^2 + b*x + c))dx : Case 3
CA 16 07 |
-
CA 16 08 |
-
CA 16 09 |
-
CA 16 10 |
-
Answers
CA 16 01. Basic formula from anti-derivative
Integrals of ration function from anti-differentiation
∫
(1/(1 + x^2))dx = arctan(x)
∫
(1/(1 - x^2))dx = arctanh(x)
Integrals of ir-ration function from anti-differentiation
∫
(1/Sqr(1 - x^2))dx = arcsin(x)
∫
(1/Sqr(1 + x^2))dx = arcsinh(x)
∫
(1/(x*Sqr(x^2 - 1))dx = arcsec(x)
∫
(1/(x*Sqr(1 - x^2))dx = arcsech(x)
Go to Begin
CA 16 02.
∫
(1/(a + b*x^2))dx = Sqr(1/a*b)*arctan(sqr(b/a)*x)
1/(a + b*x^2) = (1/a)/(1 + (b/a)*(x^2))
Let Sqr(b/a)*x = u, then du =Sqr(b/a)dx
Hence integral =
∫
(1/Sqr(b/a))*((1/a)/(1 + u^2)))du
= (1/(Sqr(b/a)*a))*arctan(u)
= (Sqr(a/b)/a)*arctan(Sqr(b/a)*x) + c
= Sqr(1/a*b)*arctan(Sqr(b/a)*x) + c
Go to Begin
CA 16 03.
∫
(1/Sqr(a - b*x^2))dx = Sqr(1/a*b)*arcsin(sqr(b/a)*x)
1/Sqr(a - b*x^2) = (1/a)/(1 - (b/a)*(x^2))
Let Sqr(b/a)*x = u, then du =Sqr(b/a)dx
Hence integral =
∫
(1/Sqr(b/a))*((1/a)/Sqr(1 - u^2)))du
= (1/(Sqr(b/a)*a))*arcsin(u)
= (Sqr(a/b)/a)*arcsin(Sqr(b/a)*x) + c
= Sqr(1/a*b)*arcsin(Sqr(b/a)*x) + c
Go to Begin
CA 16 04.
∫
(1/(a*x^2 + b*x + c))dx = A/(x+B) : case 1
Case 1 : b^2 - 4*a*c = 0
∫
(1/(a*x^2 + b*x + c))dx = A/(x + B)
Find A and B
Using completing the square
(a*x^2 + b*x + c) = a*(x^2 + b*x/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a)
= a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a)
Since b^2 - 4*a*c = 0
Hence (a*x^2 + b*x + c)= a*(x + b/(2*a))^2 since b^2 - 4*a*c = 0
x + b/(2*a) = u and du = dx
∫
(1/(a*x^2 + b*x + c))dx
∫
= (1/a)*(1/u^2)du
= (1/a)*(-2+1)*u^(-1)
= -1/(x + b/(2*a))
Hence A = -1/a and B = b/(2*a)
Example : Find
∫
(1/(x^2 + 4*x + 4))dx
Since x^2 + 4*x + 4 = (x + 2)^2
Hence
∫
(1/(x^2 + 4*x + 4))dx
∫
(1/(x + 2)^2)dx
= -1/(x + 2)
b^2 - 4*a*c GT 0
∫
(1/(a*x^2 + b*x + c))dx = A*ln(x + B)+C*ln(x - B)
Find A, B and C
Go to Begin
CA 16 05.
∫
(1/(a*x^2 + b*x + c))dx = A*arctan(B*(x+C)) : case 2
Case 2 : b^2 - 4*a*c LT 0
∫
(1/(a*x^2 + b*x + c))dx = A*arctan(B*(x + C))
Find A and B
Using completing the square
(a*x^2 + b*x + c) = a*(x^2 + b*x/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a)
= a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a)
Since b^2 - 4*a*c LT 0
Hence (a*x^2 + b*x + c)= a*(x + b/(2*a))^2 + D where D = -(b^2 - 4*a*c)/(4*a)
x + b/(2*a) = u and du = dx
∫
(1/(a*x^2 + b*x + c))dx
∫
= (1/(D + a*u^2)du
= (1/Sqr(a*D)*arctan(Sqr(D/a)*u)
= (1/Sqr(a*D)*arctan(Sqr(D/a)*(x + b/(2*a))
Hence A = 1/Sqr(a*D), B = Sqr(D/a) and C = b/(2*a)
Example : Find
∫
(1/(x^2 + 4*x + 5))dx
Since x^2 + 4*x + 5 = (x + 2)^2 + 1
Hence
∫
(1/(x^2 + 4*x + 4))dx
∫
(1/(1 + (x + 2)^2)dx
= arctan(x + 2)
Go to Begin
CA 16 06.
∫
(1/(a*x^2 + b*x + c))dx = A*ln(x+B) + C*ln(x+D) : case 3
Case 2 : b^2 - 4*a*c GT 0
∫
(1/(a*x^2 + b*x + c))dx = A*ln(x+B) + C*ln(x+D)
Find A, B, C and D
Using completing the square
(a*x^2 + b*x + c) = a*(x^2 + b*x/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a)
= a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a)
Since b^2 - 4*a*c LT 0
Hence (a*x^2 + b*x + c)= a*(x + b/(2*a))^2 - D where D = (b^2 - 4*a*c)/(4*a)
x + b/(2*a) = u and du = dx
∫
(1/(a*x^2 + b*x + c))dx
∫
=(1/a)*(1/(D/a - u^2)du
∫
= (1/a)*(E/(Sqr(D/a) + u) + F/(Sqr(D/a) - u))du
= (E*ln(Sqr(D/a) + u) + F*ln(Sqr(D/a) - u))/a
= (E/a)*ln(Sqr(D/a) + (x+b/(2*a))) + (F/a)*ln(Sqr(D/a) - (x+b/(2*a)))
Hence A = E/a, B = Sqr(D/a) + b/(2*a), C = F/a and B = Sqr(D/a) - b/(2*a)
Where E and F can be found by partial fraction
Example : Find
∫
(1/(x^2 - 3*x + 2))dx
Since x^2 - 3*x + 2 = (x - 1)*(x - 2)
Hence
∫
(1/(x^2 + 4*x + 4))dx
∫
(1/((x - 1)*(x - 2))dx
Using partial faction :
1/((x-1)*(x-2)) = A/(x - 1) + B/(x - 2)
Multiply both sides by (x-1)*(x-2)
1 = A*(x - 2) + B*(x - 1)
1 = (A+B)*x - (2*A + B)
Hence A+B = 0 and 2*A + B = 1
Hence A = -B and 2*(-B) + B = 1. Hence B = -1 and A = 1
∫
(1/(x^2 - 3*x + 2))dx
=
∫
(1/(x - 1) - 1/(x - 2))dx
= ln(x - 1) + ln(x - 2)
Go to Begin
CA 16 07. Answer
Go to Begin
CA 16 08. Answer
Go to Begin
CA 16 09. Answer
Go to Begin
CA 16 10. Answer
Go to Begin
CA 16 00. Outline
Integrals of ration function from anti-differentiation
∫
(1/(1 + x^2))dx = arctan(x)
∫
(1/(1 - x^2))dx = arctanh(x)
Integrals of ir-ration function from anti-differentiation
∫
(1/Sqr(1 - x^2))dx = arcsin(x)
∫
(1/Sqr(1 + x^2))dx = arcsinh(x)
∫
(1/(x*Sqr(x^2 - 1))dx = arcsec(x)
∫
(1/(x*Sqr(1 - x^2))dx = arcsech(x)
Integral formulae
1.
∫
(1/(a + b*x^2))dx = Sqr(1/a*b)*arctan(sqr(b/a)*x)
2.
∫
(1/(a + b*x^2))dx = Sqr(1/a*b)*arcsin(sqr(b/a)*x)
3.
∫
(1/(a*x^2 + b*x + c))dx = A/(x + B)
4.
∫
(1/(a*x^2 + b*x + c))dx = A*arctan(B*x)
5.
∫
(1/(a*x^2 + b*x + c))dx = A*ln(x-B)+B*ln(x-C)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.