Mathematics Dictionary
Dr. K. G. Shih
Completing the square
Subjects
Read Symbol defintion
Q01 |
- Completing square in y = a*x^2 + b*x + c
Q02 |
- Completing square in circle equation
Q03 |
- Completing square in ellipse equation
Q04 |
- Completing square in hyperbola equation
Q05 |
- Reference
Q06 |
-
Q07 |
-
Q08 |
-
Q09 |
-
Q10 |
-
Answers
Q01. Completing square in y = a*x^2 + b*x + c
Method
y = a*(x^2 + (b/a)*x + c/a).
y = a*(x^2 + (b/a)*x + c/a + (b/(2*a))^2 - (b/(2*a))^2 + c/a.
y = a*(x + b/(2*a))^2 - b^2/(4*a) + c.
y = a*(x + b/(2*a))^2 - (b^2 - 4*a*c)/(4*a).
Application 1 : Find vertex
At vertex of y = a*x^2 + b*x + c, it has a minimum or a maximam.
Hence (x + b/(2*a) = 0 at vertex.
Vertex : xv = -b/(2*a) and yv = F(xv)
Application 2 : Quadratic formula of a*x^2 + b*x + c = 0
Since y = 0 in y = a*x^2 + b*x + c.
Hence (x + b/(2*a)^2 = (b^2 - 4*a*c)/(4*a).
Hence x = (-b + Sqr(b^2 - 4*a*c))/(2*a).
Hence x = (-b - Sqr(b^2 - 4*a*c))/(2*a).
Example : Solve x^2 - 6*x + 8 = 0 by quadratic formula
Since a = 1, b = -6 and c = 8, hence
x1 = (-b + Sqr(b^2 - 4*a*c))/(2*a)
x1 = (-(-6) + Sqr(36 - 4*1*8))/(2*1)
x1 = (6 + Sqr(4))/2 = 4.
x2 = (-b - Sqr(b^2 - 4*a*c))/(2*a)
x2 = (-(-6) - Sqr(36 - 4*1*8))/(2*1)
x2 = (6 - Sqr(4))/2 = 2.
Go to Begin
Q02. Completing the square in circle equation
Circle standard equation : (x - h)^2 + (y - k)^2 = r^2
Center is at (h,k).
Radius is r.
Circle equation is x^2 + y^2 + c*x + d*y + e = 0, find center and radius.
(x^2 + c*x + (c/2)^2 - (c/2)^2) + (y^2 + d*x + (d/2)^2 - (d/2)^2) + e = 0.
(x + c/2)^2 + (y + d/2)^2 = (c/2)^2 + (d/2)^2) - e.
Hence center is at (-c/2,-d/2) and radius is r = Sqr((c/2)^2 + (d/2)^2) - e).
Note 1 : If r > 0 it is a circle.
Note 2 : if r = 0 it is a point.
Note 3 : if r < 0 it does not exist in the real number system.
Go to Begin
Q03. Completing the square in ellipse equation
Ellipse standard equation : (x - h)^2/(A^2) + (y - k)^2/(B^2) = 1
Center is at (h,k).
Semi-axese are A and B.
Circle equation is a*x^2 + b*y^2 + c*x + d*y + e = 0, find center and semi-axese.
a*(x^2 + c*x/a + (c/(2*a))^2 - (c/(2*a))^2)
a*(x + c/(2*a))^2 + b*(y + d/(2*b))^2 = (c/(2*a))^2 + (d/(2*b))^2) - e.
Let R = Sqr((c/(2*a))^2 + (d/(2*b))^2) - e).
a*(x + c/(2*a))^2/R + b*(y + d/(2*b))^2/R = 1.
Hence center is at (-c/(2*a),-d/(2*b)).
Semi axese : A = R/a and B = R/b.
Note 1 : If R > 0 it is an ellipse.
Note 2 : if R = 0 it is a point.
Note 3 : if R < 0 it does not exist in the real number system.
Go to Begin
Q04. Completing the square in hyperbola equation
Hyperbola standard equation : (x - h)^2/(A^2) - (y - k)^2/(B^2) = 1
Center is at (h,k).
Semi-axese are A and B.
Circle equation is a*x^2 - b*y^2 + c*x + d*y + e = 0, find center and semi-axese.
a*(x^2 + c*x/a + (c/(2*a))^2 - (c/(2*a))^2)
a*(x + c/(2*a))^2 - b*(y + d/(2*b))^2 = (c/(2*a))^2 - (d/(2*b))^2) - e.
Let R = Sqr((c/(2*a))^2 - (d/(2*b))^2) - e).
a*(x + c/(2*a))^2/R - b*(y + d/(2*b))^2/R = 1.
Hence center is at (-c/(2*a),-d/(2*b)).
Semi axese : A = R/a and B = R/b.
Note 1 : If R > 0 it is a hyperbola.
Note 2 : if R = 0 it is a point.
Note 3 : if R < 0 it does not exist in the real number system.
Go to Begin
Q05. Reference
Subject
Conic sections
Subject
Quadratic functions
Go to Begin
Q06. Answer
Go to Begin
Q07. Answer
Go to Begin
Q08. Answer
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.