Mathematics Dictionary
Dr. K. G. Shih
DeMovire's Theorem
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- DeMovire's Theorem : Rule 1
Q02 |
- Expand : (1 + i)^2
Q03 |
- Expand : (1 + i)^3
Q04 |
- Expand : (1 + i)^5
Q05 |
- References
Q01. DeMovire's Theorem
Rule 1 Definition
Expression : x + i*y = r*(cos(A) + i*sin(A))
r = Sqr(x^2 + y^2)
A = arctan(y/x)
z = x + i*y is rectangular form
z = r*(cos(A) + i*sin(A)) is polor form
cis(A) = cos(A) + i*sin(A)
Rule 1
(cos(A) + i*sin(A))^n = cos(n*A) + i*sin(n*A)
Example : Express z = 1 + i in polar form
r = Sqr(1^2 + 1^2) = Sqr(2)
A = arctan(1/1) = arctan(1) = 45 degrees
Hence Z = Sqr(2)*(cos(45) + i*sin(45) = Sqr(2)*cis(45)
Go to Begin
Q02. Application : Expand (1 + i)^2
Method 1 : Use binomial expansion
(1 + i)^2
= 1 + 2*1*i + i^2
= 1 + 2*i + (-1)
= 2*i
Method 2 : Use DeMovire's theory 1
(1 + i) = Sqr(2)*(cos(45) + i*sin(45))
(1 + i)^2
= (Sqr(2)^2)*(cos(45) + i*sin(45))^2
= 2*(cos(2*45) + i*sin(2*45))
= 2*(cos(90) + i*sin(90))
= 2*(0 + i)
= 2*i
Express (1 + i)^2 on complex coordiante
It is on y-axis with x unit = 0 and y unit = 2
Go to Begin
Q03. Application : Expand (1 + i)^3
Method 1 : Use binomial expansion
(1 + i)^3
= 1 + 3*(1^2)*i + 3(1)*(i^2) + i^3
= 1 + 3*i + 3*(1)*(-1) - i
= -2 + 2*i
Method 2 : Use DeMovire's theory 1
(1 + i) = Sqr(2)*(cos(45) + i*sin(45))
(1 + i)^3
= (Sqr(2)^3)*(cos(45) + i*sin(45))^3
= 2*Sqr(2)*(cos(3*45) + i*sin(3*45))
= 2*Sqr(2)*(cos(135) + i*sin(135))
= 2*Sqr(2)*(-Sqr(2)/2 + i*sqr(2)/2)
= -2 + 2*i
Express (1 + i)^3 on complex coordiante
It is in 2nd quadrant
It has x unit = -2 and y unit = 2
Go to Begin
Q04. Application : Expand (1 + i)^5
Method 1 : Use binomial expansion
(1 + i)^5
= 1 + 5*(1^4)*i + 10*(1^3)*(i^2) + 10*(1^2)*(i^3) + 5*(1)*(i^4) + i^5
= 1 + 5*i + 10*(1)*(-1) + 10*(1)*(-i) + 5*1*(1) + i
= 1 + 5*i -10 - 10*i + 5 + i
= -4 - 4*i
Method 2 : Use DeMovire's theory 1
(1 + i) = Sqr(2)*(cos(45) + i*sin(45))
(1 + i)^5
= (Sqr(2)^5)*(cos(45) + i*sin(45))^5
= 4*Sqr(2)*(cos(5*45) + i*sin(5*45))
= 4*Sqr(2)*(cos(225) + i*sin(225))
= 4*Sqr(2)*(-Sqr(2)/2 - i*sqr(2)/2)
= -4 - 4*i
Express (1 + i)^5 on complex coordiante
It is in 3rd quadrant
It has x unit = -4 and y unit = -4
Go to Begin
Q5. References
References :
Subject :
Trigonometry
TR 12 00
Keyword : DeMovire's Theory
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.