Mathematics Dictionary
Dr. K. G. Shih
DeMovire's Theorem
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- D002 - DeMovire's Theorem : Rule 2
Q02 |
- Solve x^2 - 1 = 0
Q03 |
- Solve x^3 - 1 = 0
Q04 |
- Solve x^5 - 1 = 0
Q05 |
- Solve x^4 + x^3 + x^2 + x + 1 = 0
Q06 |
- References
Q01. DeMovire's Theorem
Rule 2 Definition
Expression : x + i*y = r*(cos(A) + i*sin(A))
r = Sqr(x^2 + y^2)
A = arctan(y/x)
z = x + i*y is rectangular form
z = r*(cos(A) + i*sin(A)) is polor form
cis(A) = cos(A) + i*sin(A)
Rule 2
(cos(A) + i*sin(A))^(1/n) = cos((2*k*pi + A)/n) + i*sin((2*k*pi + A)/n)
Where k = 0, 1, 2, .... (n - 1)
Example : Express z = 1 + i in polar form
r = Sqr(1^2 + 1^2) = Sqr(2)
A = arctan(1/1) = arctan(1) = 45 degrees
Hence Z = Sqr(2)*(cos(45) + i*sin(45) = Sqr(2)*cis(45)
Go to Begin
Q02. Application : Solve x^2 - 1 = 0
Method 1 : Factor method
x^2 - 1 = 0
(x - 1)*(x + 1) = 0
Hence x - 1 = 0 or x = 1
Hence x + 1 = 0 or x = -1
Method 2 : Use DeMovire's theory 2
x^2 = 1
x^2 = 1*(cos(0) + i*sin(0))
x
= (cos(0) + i*sin(0))^(1/2)
= cos((2*k*pi + 0)/2) + i*sin((2*k*pi + 0)/2)
k = 0
x = (cos(0) + i*sin(0)) = 1
k = 1
x = cos((2*1*pi+0)/2) + i*sin((2*1*pi+0)/2)
x = cos(180) + i*sin(180) = -1
Go to Begin
Q03. Application : Solve x^3 - 1 = 0
Method 1 : Factor method
x^3 - 1 = 0
(x - 1)*(x^2 + x + 1) = 0
Hence x - 1 = 0 or x0 = 1
Hence x^2 + x + 1 = 0
x1 = (-1 + Sqr(1^2 - 4*1*1))/2 = (-1 + i*Sqr(3))/2
x2 = (-1 - Sqr(1^2 - 4*1*1))/2 = (-1 - i*Sqr(3))/2
Method 2 : Use DeMovire's theory 2
x^3 = 1
x^3 = 1*(cos(0) + i*sin(0))
Hence
x = (cos(0) + i*sin(0))^(1/3)
x = cos((3*k*pi + 0)/3) + i*sin((3*k*pi + 0)/3)
k = 0
x0 = (cos(0) + i*sin(0)) = 1
k = 1
x1 = cos((2*1*pi+0)/3) + i*sin((2*1*pi+0)/3)
x1 = cos(120) + i*sin(120) = -1/2 + i*Sqr(3)/2
k = 2
x2 = cos((2*2*pi+0)/3) + i*sin((2*2*pi+0)/3)
x2 = cos(240) + i*sin(240) = -1/2 - i*Sqr(3)/2
Notes
Conjugate complex
Sum of two complex roots is real
Product of two complex roots is also real
Three angles for x^3 - 1 = 0
Angle A0 = A = 0
Angle A1 = (2*pi + A)/3 = 120
Angle A2 = (4*pi + A)/3 = 240
Go to Begin
Q04. Application : Solve x^5 - 1 = 0
Method 1 : Factor method
x^5 - 1 = 0
(x - 1)*(x^4 + x^3 + x^2 + x + 1) = 0
Hence x - 1 = 0 or x0 = 1
Hence x^4 + x^3 + x^2 + x + 1 = 0
Formula is not easy in use
Method 2 : Use DeMovire's theory 2
x^5 = 1
x^5 = 1*(cos(0) + i*sin(0))
Hence
x = (cos(0) + i*sin(0))^(1/5)
x = cos((5*k*pi + 0)/5) + i*sin((5*k*pi + 0)/5)
k = 0
x0 = (cos(0) + i*sin(0)) = 1
k = 1
x1 = cos((2*1*pi+0)/5) + i*sin((2*1*pi+0)/5)
x1 = cos(72) + i*sin(72) = ?
k = 2
x2 = cos((2*2*pi+0)/5) + i*sin((2*2*pi+0)/5)
x2 = cos(144) + i*sin(144) = ?
k = 3
x3 = cos((2*3*pi+0)/5) + i*sin((2*3*pi+0)/5)
x3 = cos(216) + i*sin(216) = ?
k = 4
x4 = cos((2*4*pi+0)/5) + i*sin((2*4*pi+0)/5)
x4 = cos(288) + i*sin(288) = ?
Notes
Conjugate complex
Sum of two complex roots is real
Product of two complex roots is also real
Five angles angle for x^5 - 1 = 0
Angle A0 = A = 0
Angle A1 = (2*pi + A)/5 = 072
Angle A2 = (4*pi + A)/5 = 144
Angle A3 = (2*pi + A)/5 = 216
Angle A4 = (4*pi + A)/5 = 288
Go to Begin
Q05. Application : Solve x^4 + x^3 + x^2 + x + 1 = 0
DeMovire's theory method
Use solution of x^5 - 1 = 0 in Q04
Hense x1, x2, x3, x4 are the solutions
The angles are 72, 144, 216 and 288
Construction method
Solve x^5 - 1 = 0 by construction
Go to Begin
Q6. References
References :
Subject :
Trigonometry
TR 12 00
Keyword : DeMovire's Theory
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.