Counter
Mathematics Dictionary
Dr. K. G. Shih

Leonard Euler (1707-1783)
Subjects


Answers


Q01. Amicable number piars
Examples
  • 1. Prove that 220 and 284 are the first amicable number piars.
    • Factors of 220 : 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110.
    • Sum of factors : 1+ 2+ 4+ 5+ 10+ 11+ 20+ 22+ 44+ 55+ 110 = 284.
    • Factors of 284 : 1, 2, 4, 71, 142.
    • Sum of factors : 1+ 2+ 4+ 71+ 142 = 220.
    • Hence 220 and 284 are amicable pairs.
  • 2. If 1184 and n are an amicable number pairs, find b.
    • Factors of 1184 : 1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592.
    • Sum of Factors = 1+ 2+ 4+ 8+ 16+ 32+ 37+ 74+ 148+ 296+ 592 = 1210.
    • Hence n = 1210
    • Verify :
      • Factors of 1210 : 1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605.
      • Sum of factors = 1+ 2+ 5+ 10+ 11+ 22+ 55+ 110+ 121+ 242+ 605 = 1184
      • Hence 1184 and 1210 are amicable number pairs.

Go to Begin

Q02. Euler introudced e, i, pi into mathematical field
  • e = 1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + ......
  • i = Sqr(-1) and i^2 = -1.
  • pi = 3.141592.....

Go to Begin

Q03. Euler formula : e^(i*x) = cos(x) + i*sin(x)
  • Series of e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ......
  • Series of sin(x) = x - x^3/3! + x^5/5! - .....
  • Series of cos(x) = 1 - x^2/2! + x^4/4! - .....
  • e^(i*x) = 1 + i*x + (i*x)^2/2! + (i*x)^3/3! + (i*x)^4/4! + ....
  • Since i^2 = -1, i^3 = -i, i^4 = 1, i^5 = i, .....
  • Hence e^(i*x) = (1 - x^2/2! + x^4/4! - ....) + i*(x - x^3/3! + x^5/5! - ....)
  • Hence e^(i*x) = cos(x) + i*sin(x).

Go to Begin

Q04. Prove that e^(i*pi) = -1

  • e^(i*pi) = cos(pi) + i*sin(pi).
  • cos(pi) = -1 and sin(pi) = 0.
  • Hence e^(i*pi) = -1.
  • This expression includes the most significant symbols -, 1, e, i, pi.

Go to Begin

Q05. i, i^2, i^3, i^4
  • i = Sqr(-1)
  • i^2 = -1
  • i^3 = -i
  • i^4 = +1
  • i^5 = +i
  • i^6 = -1
  • i^7 = -i
  • i^8 = +1
  • Hence i^(4*n) = 1

Go to Begin

Q06. Answer

Go to Begin

Q07. Answer

Go to Begin

Q08. Answer

Go to Begin

Q09. Answer

Go to Begin

Q10. Answer

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1