Counter
Mathematics Dictionary
Dr. K. G. Shih

Power 6 Equation
Questions

    Read Symbol defintion

  • Q01 | - Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
  • Q02 | - Method 2 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
  • Q03 | - Method 3 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
  • Q04 | - Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
  • Q05 | - Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
  • Q06 | - Comments : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
  • Q07 | - Solve x^7 + 1 = 0
  • Q08 | - Solve x^7 - 1 = 0
  • Q09 | -
  • Q10 | -

Answers


Q01. Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0

Graphic solution
  • Study Program | Graphic Solutions of Polynomial Functions.
  • Use program 01 11, we get the following real roots by estimation
    • 0.382, -0.382, 2,618 and -2.618 (Approx graphic solutions of program 01 11)

Go to Begin

Q02. Method 2 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0

Synthetic Division
  • 1 +1 -6 -7 -6 +1 +1 | -1
  • . -1 -0 +6 +1 +5 -6
  • --------------------------
  • 1 +0 -6 -1 -5 +6 -5
  • The remaider is -5, hence x = -1 is not a solution
  • 1 +1 -6 -07 -06 +01 +01 | +1
  • . +1 +2 -04 -11 -17 -16
  • --------------------------
  • 1 +2 -4 -11 -17 -16 -15
  • The remaider is -15 hence x = 1 is not a solution
  • But other real solutions are not integers and are not easy to find.

Go to Begin

Q03. Method 2 Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0

Method 3 : Factor theory
  • Let y = F(x)
  • F(-1) = (-1)^6+ (-1)^5- 6*(-1)^4- 7*(-1)^3- 6*(-1)^2+ (-1)+ 1
  • F(-1) = 1 - 1 - 6 + 7 - 6 - 1 + 1 = -5
  • Remainder is -5, hence x = -1 is not a solution
  • F(+1) = (1)^6+ (1)^5- 6*(1)^4- 7*(1)^3- 6*(1)^2+ (1)+ 1
  • F(+1) = 1 + 1 - 6 - 7 - 6 + 1 + 1 = -15
  • Remainder is -15, hence x = 1 is not a solution

Go to Begin

Q04. Method 4 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0

Use equation theory
  • It has 4 real roots : q, r, s, t (From graph).
  • Then It has two complex roots : u = a + b*i and v = a - b*i
  • Sum of roots
    • q + r + s + t + u + v = -2
    • hence q + r + s + t + 2*a = -2 ... Eq (1)
  • Product roots
    • q*r*s*t*u*v = 1
    • Since u*v = a^2 + b^2
    • Hence q*r*s*t*(a^2+b^2) = 1 .................... Eq (2)
  • Assumption
    • Let q + r + s + t = 0 .......................... Eq (3)
    • From Eq (1), we have a = -1/2 .................. Eq (4)
    • Let q*r*s*t = 1 ................................ Eq (5)
    • From Eq (2), we have a^2 + b^2 = 1 ............. Eq (6)
    • From (4) and (6), we get a = -1/2 and b = Sqr(3)/2.
    • Hence complex roots are
      • u = a + b*i = -1/2 + i*Sqr(3)/2
      • u = a + b*i = -1/2 - i*Sqr(3)/2
  • Find q,r,s,t in Eq (3) and (5)
    • We also assume that r = -q, s = 1/q and t = -s
    • Find q = 0.381966 by using synthetic or factor theory.
    • Hence r = -0.381966, s = 2.618034 and t = -2.618034

Go to Begin

Q05. Method 5 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0

Assume that (x^2 + x + 1) is a factor of F(x)
  • ..... +1 +00 -07 -00 +1 (Coefficients of quotient)
  • --------------------------
  • +1 +1 -6 -07 -06 +01 +1 | 1 + 1 + 1
  • +1 +1 +1
  • ------------
  • +0 +0 -7 -07 -06 +01 +1 (Subtract above terms)
  • ..... -7 -07 -07
  • -------------
  • ...... 0 -00 +01 +01 +1 (Subtract above terms)
  • ............ +01 +01 +1
  • -------------------
  • ............. 0 +0 + 0 (Subtract above terms and Remainder is 0)
  • Hence (x^2 + x + 1) is a facto of F(x)
  • Hence F(x) = (x^2 + x + 1)*(x^4 -7*x^2 + 1)
  • Solution of F(x) = (x^2 + x + 1)*(x^4 - 7*x^2 +1) = 0
    • x^2 + x + 1 = 0 and x = (-1+Sqr(3))/2 and x = (-1-Sqr(3))/2
    • x^4 - 7*x^2 + 1 = 0
      • x^2 = (7 + Sqr(49 -4))/2 = 13.70820393/2 = 6.854101967
      • Hence x = 0.381966012 and x = -0.381966012
      • x^2 = (7 - Sqr(49 -4))/2 = 0.291796068/2 = 0.145898034
      • Hence x = 2.618033989 and x = -2.618033989

Go to Begin

Q06. Comments : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0


  • We should know that (x^2 + x + 1) is a factor of the equation
  • Use graph of the equation on computer is fast to estimate the solutions

Go to Begin

Q07. Solve X^6 + 1 = 0
De Moivre's Theory : Draw a unit circle
  • 1. Draw 1st angle : A1 = (2*pi/6)/2 = 360/12
  • 2. Draw 2nd angle : A2 = 1*2*pi/6 + A1
  • 3. Draw 3nd angle : A3 = 2*2*pi/6 + A1
  • 4. Draw 4nd angle : A3 = 3*2*pi/6 + A1
  • 5. Draw 5nd angle : A3 = 4*2*pi/6 + A1
  • 6. Draw 6nd angle : A3 = 5*2*pi/6 + A1
Solutions : Use calculator
  • r1 = cos(A1) + i*sin(A1)
  • r2 = cos(A2) + i*sin(A2)
  • r3 = cos(A3) + i*sin(A3)
  • r4 = cos(A4) + i*sin(A4)
  • r5 = cos(A5) + i*sin(A5)
  • r6 = cos(A6) + i*sin(A6)
Solutions : By constuctions
  • Find (x1,y1) for angle A1. Measure x1 and y1
  • Similarly for other angles
  • Use the conjugate complex to reduce the calculation

Go to Begin

Q08. Solve X^7 - 1 = 0
De Moivre's Theory : Draw a unit circle
  • 1. Draw 1st angle : A1 = 1*2*pi/6
  • 2. Draw 2nd angle : A2 = 2*2*pi/6
  • 3. Draw 3nd angle : A3 = 3*2*pi/6
  • 4. Draw 4nd angle : A4 = 4*2*pi/6
  • 5. Draw 5nd angle : A5 = 5*2*pi/6
  • 6. Draw 6nd angle : A6 = 6*2*pi/6
Solutions : Use calculator
  • r1 = cos(A1) + i*sin(A1)
  • r2 = cos(A2) + i*sin(A2)
  • r3 = cos(A3) + i*sin(A3)
  • r4 = cos(A4) + i*sin(A4)
  • r5 = cos(A5) + i*sin(A5)
  • r6 = cos(A6) + i*sin(A6)
Solutions : By constuctions
  • Find (x1,y1) for angle A1. Measure x1 and y1
  • Similarly for other angles
  • Use the conjugate complex to reduce the calculation

Go to Begin

Q09. Answer

Go to Begin

Q10. Answer

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1