Mathematics Dictionary
Dr. K. G. Shih
Power 6 Equation
Questions
Read Symbol defintion
Q01 |
- Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Q02 |
- Method 2 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Q03 |
- Method 3 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Q04 |
- Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Q05 |
- Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Q06 |
- Comments : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Q07 |
- Solve x^7 + 1 = 0
Q08 |
- Solve x^7 - 1 = 0
Q09 |
-
Q10 |
-
Answers
Q01. Method 1 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Graphic solution
Study Program |
Graphic Solutions of Polynomial Functions.
Use program 01 11, we get the following real roots by estimation
0.382, -0.382, 2,618 and -2.618 (Approx graphic solutions of program 01 11)
Go to Begin
Q02. Method 2 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Synthetic Division
1 +1 -6 -7 -6 +1 +1 | -1
. -1 -0 +6 +1 +5 -6
--------------------------
1 +0 -6 -1 -5 +6 -5
The remaider is -5, hence x = -1 is not a solution
1 +1 -6 -07 -06 +01 +01 | +1
. +1 +2 -04 -11 -17 -16
--------------------------
1 +2 -4 -11 -17 -16 -15
The remaider is -15 hence x = 1 is not a solution
But other real solutions are not integers and are not easy to find.
Go to Begin
Q03. Method 2 Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Method 3 : Factor theory
Let y = F(x)
F(-1) = (-1)^6+ (-1)^5- 6*(-1)^4- 7*(-1)^3- 6*(-1)^2+ (-1)+ 1
F(-1) = 1 - 1 - 6 + 7 - 6 - 1 + 1 = -5
Remainder is -5, hence x = -1 is not a solution
F(+1) = (1)^6+ (1)^5- 6*(1)^4- 7*(1)^3- 6*(1)^2+ (1)+ 1
F(+1) = 1 + 1 - 6 - 7 - 6 + 1 + 1 = -15
Remainder is -15, hence x = 1 is not a solution
Go to Begin
Q04. Method 4 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Use equation theory
It has 4 real roots : q, r, s, t (From graph).
Then It has two complex roots : u = a + b*i and v = a - b*i
Sum of roots
q + r + s + t + u + v = -2
hence q + r + s + t + 2*a = -2 ... Eq (1)
Product roots
q*r*s*t*u*v = 1
Since u*v = a^2 + b^2
Hence q*r*s*t*(a^2+b^2) = 1 .................... Eq (2)
Assumption
Let q + r + s + t = 0 .......................... Eq (3)
From Eq (1), we have a = -1/2 .................. Eq (4)
Let q*r*s*t = 1 ................................ Eq (5)
From Eq (2), we have a^2 + b^2 = 1 ............. Eq (6)
From (4) and (6), we get a = -1/2 and b = Sqr(3)/2.
Hence complex roots are
u = a + b*i = -1/2 + i*Sqr(3)/2
u = a + b*i = -1/2 - i*Sqr(3)/2
Find q,r,s,t in Eq (3) and (5)
We also assume that r = -q, s = 1/q and t = -s
Find q = 0.381966 by using synthetic or factor theory.
Hence r = -0.381966, s = 2.618034 and t = -2.618034
Go to Begin
Q05. Method 5 : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
Assume that (x^2 + x + 1) is a factor of F(x)
..... +1 +00 -07 -00 +1 (Coefficients of quotient)
--------------------------
+1 +1 -6 -07 -06 +01 +1 | 1 + 1 + 1
+1 +1 +1
------------
+0 +0 -7 -07 -06 +01 +1 (Subtract above terms)
..... -7 -07 -07
-------------
...... 0 -00 +01 +01 +1 (Subtract above terms)
............ +01 +01 +1
-------------------
............. 0 +0 + 0 (Subtract above terms and Remainder is 0)
Hence (x^2 + x + 1) is a facto of F(x)
Hence F(x) = (x^2 + x + 1)*(x^4 -7*x^2 + 1)
Solution of F(x) = (x^2 + x + 1)*(x^4 - 7*x^2 +1) = 0
x^2 + x + 1 = 0 and x = (-1+Sqr(3))/2 and x = (-1-Sqr(3))/2
x^4 - 7*x^2 + 1 = 0
x^2 = (7 + Sqr(49 -4))/2 = 13.70820393/2 = 6.854101967
Hence x = 0.381966012 and x = -0.381966012
x^2 = (7 - Sqr(49 -4))/2 = 0.291796068/2 = 0.145898034
Hence x = 2.618033989 and x = -2.618033989
Go to Begin
Q06. Comments : Solve x^6 + x^5 - 6*x^4 - 7*x^3 - 6*x^2 + x + 1 = 0
We should know that (x^2 + x + 1) is a factor of the equation
Use graph of the equation on computer is fast to estimate the solutions
Go to Begin
Q07. Solve X^6 + 1 = 0
De Moivre's Theory : Draw a unit circle
1. Draw 1st angle : A1 = (2*pi/6)/2 = 360/12
2. Draw 2nd angle : A2 = 1*2*pi/6 + A1
3. Draw 3nd angle : A3 = 2*2*pi/6 + A1
4. Draw 4nd angle : A3 = 3*2*pi/6 + A1
5. Draw 5nd angle : A3 = 4*2*pi/6 + A1
6. Draw 6nd angle : A3 = 5*2*pi/6 + A1
Solutions : Use calculator
r1 = cos(A1) + i*sin(A1)
r2 = cos(A2) + i*sin(A2)
r3 = cos(A3) + i*sin(A3)
r4 = cos(A4) + i*sin(A4)
r5 = cos(A5) + i*sin(A5)
r6 = cos(A6) + i*sin(A6)
Solutions : By constuctions
Find (x1,y1) for angle A1. Measure x1 and y1
Similarly for other angles
Use the conjugate complex to reduce the calculation
Go to Begin
Q08. Solve X^7 - 1 = 0
De Moivre's Theory : Draw a unit circle
1. Draw 1st angle : A1 = 1*2*pi/6
2. Draw 2nd angle : A2 = 2*2*pi/6
3. Draw 3nd angle : A3 = 3*2*pi/6
4. Draw 4nd angle : A4 = 4*2*pi/6
5. Draw 5nd angle : A5 = 5*2*pi/6
6. Draw 6nd angle : A6 = 6*2*pi/6
Solutions : Use calculator
r1 = cos(A1) + i*sin(A1)
r2 = cos(A2) + i*sin(A2)
r3 = cos(A3) + i*sin(A3)
r4 = cos(A4) + i*sin(A4)
r5 = cos(A5) + i*sin(A5)
r6 = cos(A6) + i*sin(A6)
Solutions : By constuctions
Find (x1,y1) for angle A1. Measure x1 and y1
Similarly for other angles
Use the conjugate complex to reduce the calculation
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.