Mathematics Dictionary
Dr. K. G. Shih
Factor Theory
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Factor theory
Q02 |
- Remainder theory
Q03 |
- Synthetic division
Q04 |
- F(x) = x^5 -3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12, find F(-1)
Q05 |
- F(x) = x^5 -3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12, Express in factors
Q01. Factor theory
Factor thoery of functions F(x)
If F(a) = 0, then (x - a) is a factor of F(x)
Hence F(x) = (x - a)*G(x)
If F(-a) = 0, then (x + a) is a factor of F(x)
Hence F(x) = (x + a)*G(x)
Example : Prove that x = 2 is a factor of F(x) = x^2 - 6*x + 8
F(2) = 2^2 - 6*2 + 8 = 0
Hence (x - 2) is a factor of F(x)
Hence F(x) = (x - 2)*(x - 4)
Go to Begin
Q02. Remainder theory
Definition
If F(x) is divided by (x - a), then remainder is F(a)
If F(x) is divided by (x + a), then remainder is F(-a)
Example : F(x) = x^2 - 6*x + 8 is divided by (x-3), find remainder
F(3) = 3^2 - 6*3 + 8 = -1.
F(x) divide by (x-3), the remainder is -1.
Go to Begin
Q03. Synthetic division
Prove that (x^3 + 1)/(x + 1) = x^2 - x + 1
Put coefficients of x^3 + 1 in a row
For missing terms the coefficients put a zero
Step 1
..... 1 +0 +0 +1 | -1 (For x + 1)
....... -1 (1 times -1 = -1)
..... ------------
..... 1 -1 (0 - 1 = -1)
Step 2
..... 1 +0 +0 +1 | -1 (For x + 1)
....... -1 +1 (-1 times -1 = +1)
..... ------------
..... 1 -1 +1 (0 + 1 = +1)
Step 3
..... 1 +0 +0 +1 | -1 (For x + 1)
....... -1 +1 -1 (+1 times -1 = -1)
..... ------------
..... 1 -1 +1 +0 (+1 - 1 = +0)
Since remainder is zero
Hence x^3 + 1 = (x + 1)*(x^2 - x + 1)
Prove that (x^3 - 1)/(x - 1) = x^2 + x + 1
Put coefficients of x^3 - 1 in a row
For missing terms the coefficients put a zero
..... 1 +0 +0 -1 | 1 (Note 1)
....... +1 +1 +1 |
..... ------------
..... 1 +1 +1 +0 (Note 2)
Hence x^3 - 1 = (x - 1)*(x^2 + x + 1)
Notes
Note 1 : 1 stands for (x - 1)
Note 2 :
2nd number = +0 + 1
3rd number = +0 + 1
4th number = -1 + 1 = 0 (remainder is zero)
Example : Express x^3 - 6*(x^2) + 11*x - 6 in factor form
We have to try (x - 1), (x - 2), (x - 3), (x + 1), (x + 2), ....
That is all factors of last term number 6
They are -1, -2, -3, -6, 1, 2, 3, 6
We try (x - 1)
..... 1 -06 +11 -06 | +1 (For x - 1 we use +1)
....... +01 -05 +06 |
..... ------------
..... 1 -05 +06 +00
Since remainder is zero
Hence (x - 1) is a factor
We have x^3 - 6*(x^2) + 11*x - 6 = (x - 1)*(x^2 - 5*x + 6)
Since x^2 - 5*x + 6 = (x - 2)*(x - 3)
Hence x^3 - 6*(x^2) + 11*x - 6 = (x - 1)*(x - 2)*(x - 3)
Note
If coefficient of first term is 2 and last term is 6
we have to try 1/2, 3/2, ....
Go to Begin
Q4. F(x) = x^5 -3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
Find F(-1)
Step 1
...... +1 +03 -05 -15 +04 +12 | -1
......... -01 (1 times -1)
...... ------------------------
...... +1 +02 (3 - 1 = 2)
Step 2
...... +1 +03 -05 -15 +04 +12 | -1
......... -01 -02 (2 times -1)
...... ------------------------
...... +1 +02 -07 (-5 - 2 = -7)
Step 3
...... +1 +03 -05 -15 +04 +12 | -1
......... -01 -02 +07 (-7 times -1)
...... ------------------------
...... +1 +02 -07 -08 (-15 + 7 = -8)
Step 4
...... +1 +03 -05 -15 +04 +12 | -1
......... -01 -02 +07 +08 (-8 times -1)
...... ------------------------
...... +1 +02 -07 -08 +12 (4 + 8 = 12)
Step 5
...... +1 +03 -05 -15 +04 +12 | -1
......... -01 -02 +07 +08 -12 (12 times -1)
...... ------------------------
...... +1 +02 -07 -08 +12 -00 (12 - 12 = 0)
Hence the remainder is zero
That is F(x) is divisible by (x + 1)
That is also (x + 1) is a factor of F(x)
F(x) = (x + 1)*(x^4 + 2*(x^3) - 7*(x^2) - 8*x + 12)
Go to Begin
Q5. F(x) = x^5 -3*x^4 - 5*x^3 - 15*x^2 + 4*x + 12
Express F(x) in product of factors
Step 1 : Try (x + 1)
...... +1 +03 -05 -15 +04 +12 | -1
......... -01 -02 +07 +08 -12 (12 times -1)
...... ------------------------
...... +1 +02 -07 -08 +12 -00 (12 - 12 = 0)
F(x) = (x + 1)*(x^4 + 2*(x^3) - 7*(x^2) - 8*x + 12)
Step 2 : Try (x + 2) is afactor of x^4 + 2*(x^3) - 7*(x^2) - 8*x + 12
...... +1 +02 -07 -08 +12 | -2
......... -02 -00 +14 -12
...... --------------------
...... +1 -00 -07 +06 +00
F(x) = (x + 1)*(x + 2)*(x^3 - 7*x + 6)
Step 3 : Try (x - 1) is afactor of x^3 - 7*x + 6
...... +1 +00 -07 +06 | +1
......... +01 +01 -06
...... --------------------
...... +1 +01 -06 +00
F(x) = (x + 1)*(x + 2)*(x - 1)(x^2 + x - 6)
Since (x^2 + x - 6) = (x + 3)*(x - 2)
F(x) = (x + 1)*(x + 2)*(x + 3)*(x - 1)*(x - 2)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.