Counter
Mathematics Dictionary
Dr. K. G. Shih

Question and Answer
Questions


  • Q01 | - Study y = 1/x
  • Q02 | - cos(A-B) = cos(A)*cos(B) + sin(A)*cos(B)
  • Q03 | - Equilateral triangle : Divide one side into 3 equal parts
  • Q04 | - Study y = (x^2)/2 - 1
  • Q05 | - Equilateral triangle : DP + DQ + DS = height
  • Q06 | - A(7,4), B(3,1), C(0,k) if AC + BC is minimum find k
  • Q07 | -
  • Q08 | -
  • Q09 | -
  • Q10 | -

  • Answers


    Q01. Study y = 1/x

    Keywords
    • Hyperbola
    • First and send derivative
    Properties of graph
    • If x LT 0
      • When x goto -infinite, y EQ -0. Hence y = 0 is horizontal asymptote
      • The range of y is from -0 to -infinite at x = 0
      • The curve is decreasing (y' = -1/(x^2) is less than zero)
      • The curve is concave downward (y" = 2/(x^3) is less than zero)
    • If x EQ 0
      • The curve goes to -infinite
      • Hence x = 0 is vertical asymptote
    • If x GT 0
      • When x goto +infinite, y EQ +0. Hence y = 0 is horizontal asymptote
      • The range of y is from +infinite at x = 0 to +0
      • The curve is decreasing (y' = -1/(x^2) is negative)
      • The curve is concave upward (y" = 2/(x^3) is positive)
    • It has no y-intercept and no zero values
    Hyperbola properties
    Reference
    • Diagram : AN 21 : 14 04
    • Text : AN 14 02
    • Hyperboba : AN 08 00

    Go to Begin

    Q02. Prove that cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)

    Keywords
    • Distance formula
    • Cosine law
    Diagram and proof

    Go to Begin

    Q03. Equilateral triangle : Divide one side into 3 equal parts

    Keywords
    • Properties of equilateral triangle
    • Properties of hexagon
    • Law of cosine and law of sine
    Construction
    • Draw an equilateral triangle ABC
    • Use BC as diameter to draw a semi-circle below BC
    • Divide the semi-circle into 3 equal arcs : Arc BD = arc DE = arc EC
    • Join AD and cut BC at F
    • Join AE and cut BC at G
    • Then BF = FG = GC
    Proof
    • Let BC = AB = 2 then BD = 1
    • It is known that angle ABD = 120 degrees (Angle ABF = 60, angle FBD = 60)
    • In triangle ABD, find AD by cosine law
      • We know AB = 2, angle ABD = 120 and BD = 1.
      • AD^2 = AB^2 + BD^2 - 2*AB*BD*cos(ABD)
      • AD^2 = 2^2 + 1^2 - 2*2*1*cos(120)
      • AD^2 = 5 - 4*(-1/2)
      • AD^2 = 7 or AD = Sqr(7)
    • In triangle ABD, we can find angle BAD by sine law
      • BD/sin(BAD) = AD/sin(ABD)
      • Hence sin(BAD) = BD*sin(ABD)/AD
      • Hence sin(BAD)
      • = 1*sin(120)/Sqr(7)
      • = (Sqr(3)/2)/(Sqr(7))
      • = Sqr(3)/(2*Sqr(7) ............... (1)
      • cos(BAD) = Sqr(1 - sin(BAD)^2)
      • = Sqr(1 - 3/28)
      • = 5/Sqr(28) ...................... (2)
    • In right triangle AOF where AO perpendicular to BC, find AF
      • AO = Sqr(3)
      • Angle FAO = 30 - angle BAF
      • cos(FAO) = cos(30 - BAF)
      • = cos(30)*cos(BAF) + sin(30)*sin(BAF)
      • Substitute (1) and (2) into above expression
      • cos(FAO) = (Sqr(3)/2)*(Sqr(25/28)) + (1/2)*(1/(2*Sqr(7))
      • = (5*Sqr(3)/(2*Sqr(28)) + 1/(4*Sqr(7))
      • = (5 + 1)/(4*Sqr(7))
      • = 3/(2*Sqr(7)) ............................. (3)
      • Since triangle is right triangle
      • hence AF = AO/cos(FAO)
      • Substitute into above we have
      • AF = (Sqr(3)*2*Sqr(7))/3 = 2*Sqr(21)/3 ..... (4)
    • In triangle ABF, we use sine law again to find BF
      • BF/sin(BAF) = AF/sin(60)
      • Substitute (1) and (4) into above expression
      • BF = (1/(2*Sqr(7))*(2*Sqr(21)/3)/(Sqr(3)/2)
      • = (2*Sqr(21)/(6*Sqr(7))/(Sqr(3)/2)
      • = (4*Sqr(21))/(6*Sqr(21))
      • = 2/3
      • = BC/3 where we assume BC = 2

    Go to Begin

    Q04. Study y = (x^2)/2 - 1

    Diagram
    Properties of curve of y = a*x^2 + B*x + c : a = 1/2, b = 0 and c = -1
    • 1. y-intercept is c = -1
    • 2. Zero values are at x1 = +Sqr(2) and x2 = -Sqr(2)
    • 3. When x LT 0, the curve is decreasing (y' LT 0)
    • 4. When x GT 0, the curve is increasing (y' GT 0)
    • 5. The curve is concave upward (a GT 0 or y" GT 0)
    • 6. Vertex at (0, -1). It is the minimum point
    Properties of parabola y = a*x^2 + b*x + c : a = 1/2, b = 0 and c = -1
    • 1. Principal axis is x = 0
    • 2. Vertex is at xv = 0 and yv = -1
    • 3. Distance from focus to vertex is D = 1/(2*a) = 2
    • 4. Vertex is at mid point from focus to directrix
      • Focus : xf = xv = 0 amd yf = yv + D/2 = -1 + 1 = 0
      • Equation of diectrix : y = yv - D/2 = -2
    • 5. Locus : Point P to focus and directrix has same diatance
    • 6. Polar form : y = D/(1 - sin(A)) and D = 2

    Go to Begin

    Q05. Equilateral triangle : DP + DQ + DS = height

    Keywords
    • Equilateral triangle properties
    • sin(A) + sin(B) = 2*sin((A+B)/2)*cos((A-B)/2)
    Diagram
    Construction
    • 1. Draw an equilateral triangle
    • 2. Point D is inside triangle
    • 3. Draw DP, DQ and DS perpendicular to the sides
    • 4. Prove that DP + DQ + DS = h
    Proof
    • Angle BAD = 30 + angle RAD and Angle DAQ = 30 - angle RAD
    • Right triangle ADQ : DQ = AD*sin(30 - RAD)
    • Right triangle SAD : DS = AD*sin(30 + RAD)
    • Hence DQ + DS = AD*(sin(30 - RAD) + sin(30 + RAD))
    • Since sin(A) + sin(B) = 2*(sin((A+B)/2)*(cos(A-B)/2)
    • Hence DQ + DS = 2*AD*(sin(30)*cos(RAD))
    • = AD*cos(RAD)
    • = AR
    • Height = AR + DP = DP + DQ + DS

    Go to Begin

    Q06. A(7,4), B(3,1), C(0,k) if AC + BC is minimum find k

    Keywords
    • y is minimu if y' = 0
    • if y = a*x^2 + b*x + c, y' = 2*a*x + b
    • If y = Sqr(a*x^2 + b*x + c), y' = (2*a*x + b)/(2*Sqr(a*x^2 + b*x + c)
    Diagram
    Construction
    • 1. Draw rectangular coordinate
    • 2. Draw points A, B and C
    If AC + BC is minimum, find k
    • Let h = AC + BC
    • = Sqr((7 - 0)^2 + (4 - k)^2) + Sqr((3 - 0)^2 + (1 - k)^2)
    • = Sqr(49 + 16 - 8*k + k^2) + Sqr(9 + 1 - 2*k + k^2)
    • = Sqr(k^2 - 8*k + 65) + Sqr(k^2 - 2*k + 10)
    • If h is minimum
      • dh/dk = 0
      • (2*k - 8)/(2*Sqr(k^2 - 8*k + 65)) + (2*k - 2)/(2*Sqr(k^2 - 2*k + 10)) = 0
    • Simplify, we have
    • (k - 4)*Sqr(k^2 - 2*k + 10) = -(k - 1)*Sqr(k^2 - 8*k + 65)
    • Square both sides
      • ((k - 4)^2)*(9 + (k - 1)^2) = ((k - 1)^2)*(49 + (k^2 - 4)^2)
      • 9*(k - 4)^2 + ((k - 4)*(x - 1))^2 = 49*((k - 1)^2) + ((k - 1)*(x^2 - 4))^2
      • 9*(k - 4)^2 = 49*(k - 1)^2
    • Take square on both sides
      • 3*(k - 4) = +7*(k - 1), 4*k = -5 or k = -1.25
      • 3*(k - 4) = -7*(k - 1), 10*k = 19 or k = 1.9
    If AC^2 + BC^2 is minimum, find k
    • h^2 = AC^2 + BC^2
    • h^2 = (49 + (4 - k)^2) + (9 + (k - 1)^2)
    • h^2 = 65 - 8*k + k^2 + 10 + k^2 - 2*k
    • h^2 = 2*k^2 - 10*k + 75
    • Use completing the square
      • h^2 = 2*(k^2 - 5*k + (5/2)^2 - (5/2)^2) + 75
      • h^2 = 2*(k - 5/2)^2 + 75 - 2*(5/2)^2
      • h^2 is minimum if k = 5/2
    • Use derivetative
      • d(h^2)/dk = 0
      • 4*k - 10 = 0
      • k = 2.5

    Go to Begin

    Q07. Answer

    Go to Begin

    Q08. Answer

    Go to Begin

    Q09. Answer

    Go to Begin

    Q10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1