Mathematics Dictionary
Dr. K. G. Shih
Functions
Subjects
Read Symbol defintion
Q01 |
- Defintion
Q02 |
- Function names
Q03 |
- Properties of functions
Q04 |
- Composite functions
Q05 |
- Factors of functions
Q06 |
- Inverse functions
Q07 |
- Rationalize denominator
Q08 |
- Reference
Q09 |
-
Q10 |
-
Answers
Q01. Defintion
An expression has one variable has replation with other variable.
Expression : y = F(x).
Independent variable is x. It is also called domain.
Dependent variable is y. It is also called range.
For y = F(x), it has only one y value for each given x value.
y = Sqr(1 - x^2) is a function.
x^2 + y^2 = 1 is not a functione because for each x value y has 2 values.
Go to Begin
Q02. Name of functions
By degree
Constant function : y = c where c is constant. It is a horizontal line
Linear function : y = a*x + b. It is a line.
Quadratic functions : y = a*x^2 + b*x + c. It is a parabola
Cubic function : y = a*x^3 + b*x^2 + c*x + d.
Quartic function : y = a*x^4 + b*x^3 + c*x^2 + d*x + e.
By expression form
Explicit function :
Function y = F(x) is explicit function.
Example : y = x^2 - 6*x + 8 is explicit function.
Implicit function :
F(x,y) = 0 is implicit funtion.
Example : x^2 - 6*x + 8 - y = 0 is implicit funtion.
Rational function
y = F(x)/G(x).
Example : (x+2)/(x^2-6*x+8)
Irrational function
y = Sqr(F(x)).
Example : y = Sqr(1 - x^2)
Complex function
z = x + i*y.
Go to Begin
Q03. Properties of cuntions
Odd functions
If F(-x) = -F(x), F(x) is odd function.
Example : F(x) = x^3 is odd function since F(-x) = (-x)^3 = -x^3 = -F(x).
Property : Rotate 180 degree about origin, the curve will be same.
Even functions
If F(-x) = F(x), F(x) is evend function.
Example : F(x) = x^2 is even function since F(-x) = (-x)^2 = x^2 = F(x).
Property : The curve is symmetrical to y-axis.
Periodic functions
If F(x+p) = F(x), F(x) is periodic function with period p.
Example 1 : sin(x + 2*pi) = sin(x) and period is 2*pi.
Example 2 : cos(x + 2*pi) = cos(x) and period is 2*pi.
Example 3 : tan(x + 1*pi) = tan(x) and period is 1*pi.
Go to Begin
Q04. Composite function
Defintion
y = F(G(x)) is composite function where G(x) is also a fuction.
Example : F(x) = x^2 + 2*x - 4 and G(x) = x + 1, find F(G(a))
F(G(a)) = (G(a))^2 + 2*G(a)x - 4
F(G(a)) = (a + 1)^2 + 2*(a+1) - 4
Composite of inverse
e^(ln(x)) = x.
ln(e^x) = x.
sin(arcsin(x)) = x.
arcsin(sin(A)) = A.
Go to Begin
Q05. Factors of Expressions
x^2 - y^2 = (x+y)*(x-y) This is square differen equals sum times difference.
x^2 + y^2 = no real factors.
x^3 - y^3 = (x-y)*(x^2 + x*y +y^2).
x^3 + y^3 = (x+y)*(x^2 - x*y +y^2).
x^4 - y^4 = (x+y)*(x-y)*(x^2+y^2).
x^4 + y^4 = no real factors.
x^5 - y^5 = (x-y)*(x^4 + (x^3)*y +(x^2)*(y^2) - x*(y^3) + y^3.
x^5 + y^5 = (x+y)*(x^4 - (x^3)*y +(x^2)*(y^2) + x*(y^3) + y^3..
Factors in perfect square
x^2 - 2*x*y + y^2 = (x-y)^2
x^2 + 2*x*y + y^2 = (x+y)^2
Factors in perfect cube
x^3 - 3*(x^2)*y + 3*x*(y^2) - y^3 = (x-y)^3
x^3 + 3*(x^2)*y + 3*x*(y^2) + y^3 = (x+y)^3
Studys Subject |
Factors of expression of linear functions
Go to Begin
Q06. Inverse functions
Studys Subject |
Inverse of linear functions
Studys Subject |
Inverse of Quadratic functions
Go to Begin
Q07. Rationalize denominator
Example 1 : Rationalize y = 1/Sqr(1-x^2)
Make denominator a rational function.
Hence multiply numerator and denominator by Sqr(1-x^2).
y = Sqr(1-x^2)/(Sqr(1-x^2)*Sqr(1-x^2).
y = Sqr(1-x^2)/(1-x^2).
Example 1 : Rationalize y = 1/(2+i)
Make denominator a rational function.
Hence multiply numerator and denominator by (2-i).
y = (2+i)/((2+i)*(2-i)).
y = (2+i)/(2^2 - i^2).
Since i^2 = -1.
Hence y = (2+i)/5.
Go to Begin
Q08. Reference
Studys Subject |
Sketch y = F(x) or y = F(x)/G(x)
Click start.
Click Subject in upper box
Subject 1 : Linear functions.
Subject 2 : Quadratic functions.
Subject 3 : Rational functions.
Click program in lower box
Studys Subject |
Complex numbers
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.