Counter
Mathematics Dictionary
Dr. K. G. Shih

Functions
Subjects


Answers


Q01. Defintion
  • An expression has one variable has replation with other variable.
  • Expression : y = F(x).
    • Independent variable is x. It is also called domain.
    • Dependent variable is y. It is also called range.
  • For y = F(x), it has only one y value for each given x value.
    • y = Sqr(1 - x^2) is a function.
    • x^2 + y^2 = 1 is not a functione because for each x value y has 2 values.

Go to Begin

Q02. Name of functions
By degree
  • Constant function : y = c where c is constant. It is a horizontal line
  • Linear function : y = a*x + b. It is a line.
  • Quadratic functions : y = a*x^2 + b*x + c. It is a parabola
  • Cubic function : y = a*x^3 + b*x^2 + c*x + d.
  • Quartic function : y = a*x^4 + b*x^3 + c*x^2 + d*x + e.
By expression form
  • Explicit function :
    • Function y = F(x) is explicit function.
    • Example : y = x^2 - 6*x + 8 is explicit function.
  • Implicit function :
    • F(x,y) = 0 is implicit funtion.
    • Example : x^2 - 6*x + 8 - y = 0 is implicit funtion.
  • Rational function
    • y = F(x)/G(x).
    • Example : (x+2)/(x^2-6*x+8)
  • Irrational function
    • y = Sqr(F(x)).
    • Example : y = Sqr(1 - x^2)
  • Complex function
    • z = x + i*y.

Go to Begin

Q03. Properties of cuntions
Odd functions
  • If F(-x) = -F(x), F(x) is odd function.
  • Example : F(x) = x^3 is odd function since F(-x) = (-x)^3 = -x^3 = -F(x).
  • Property : Rotate 180 degree about origin, the curve will be same.
Even functions
  • If F(-x) = F(x), F(x) is evend function.
  • Example : F(x) = x^2 is even function since F(-x) = (-x)^2 = x^2 = F(x).
  • Property : The curve is symmetrical to y-axis.
Periodic functions
  • If F(x+p) = F(x), F(x) is periodic function with period p.
  • Example 1 : sin(x + 2*pi) = sin(x) and period is 2*pi.
  • Example 2 : cos(x + 2*pi) = cos(x) and period is 2*pi.
  • Example 3 : tan(x + 1*pi) = tan(x) and period is 1*pi.

Go to Begin

Q04. Composite function
Defintion
  • y = F(G(x)) is composite function where G(x) is also a fuction.
  • Example : F(x) = x^2 + 2*x - 4 and G(x) = x + 1, find F(G(a))
    • F(G(a)) = (G(a))^2 + 2*G(a)x - 4
    • F(G(a)) = (a + 1)^2 + 2*(a+1) - 4
Composite of inverse
  • e^(ln(x)) = x.
  • ln(e^x) = x.
  • sin(arcsin(x)) = x.
  • arcsin(sin(A)) = A.

Go to Begin

Q05. Factors of Expressions
  • x^2 - y^2 = (x+y)*(x-y) This is square differen equals sum times difference.
  • x^2 + y^2 = no real factors.
  • x^3 - y^3 = (x-y)*(x^2 + x*y +y^2).
  • x^3 + y^3 = (x+y)*(x^2 - x*y +y^2).
  • x^4 - y^4 = (x+y)*(x-y)*(x^2+y^2).
  • x^4 + y^4 = no real factors.
  • x^5 - y^5 = (x-y)*(x^4 + (x^3)*y +(x^2)*(y^2) - x*(y^3) + y^3.
  • x^5 + y^5 = (x+y)*(x^4 - (x^3)*y +(x^2)*(y^2) + x*(y^3) + y^3..
Factors in perfect square
  • x^2 - 2*x*y + y^2 = (x-y)^2
  • x^2 + 2*x*y + y^2 = (x+y)^2
Factors in perfect cube
  • x^3 - 3*(x^2)*y + 3*x*(y^2) - y^3 = (x-y)^3
  • x^3 + 3*(x^2)*y + 3*x*(y^2) + y^3 = (x+y)^3
Studys Subject | Factors of expression of linear functions

Go to Begin

Q06. Inverse functions

Go to Begin

Q07. Rationalize denominator
Example 1 : Rationalize y = 1/Sqr(1-x^2)
  • Make denominator a rational function.
  • Hence multiply numerator and denominator by Sqr(1-x^2).
  • y = Sqr(1-x^2)/(Sqr(1-x^2)*Sqr(1-x^2).
  • y = Sqr(1-x^2)/(1-x^2).
Example 1 : Rationalize y = 1/(2+i)
  • Make denominator a rational function.
  • Hence multiply numerator and denominator by (2-i).
  • y = (2+i)/((2+i)*(2-i)).
  • y = (2+i)/(2^2 - i^2).
  • Since i^2 = -1.
  • Hence y = (2+i)/5.

Go to Begin

Q08. Reference
  • Studys Subject | Sketch y = F(x) or y = F(x)/G(x)
    • Click start.
    • Click Subject in upper box
      • Subject 1 : Linear functions.
      • Subject 2 : Quadratic functions.
      • Subject 3 : Rational functions.
    • Click program in lower box
  • Studys Subject | Complex numbers

Go to Begin

Q09. Answer

Go to Begin

Q10. Answer

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1