The Hyperbolic Function
Output of MD2002 Program ABH
Question and Answer
Questions
Symbol Defintion
Example : Sqr(x) = Square root of x
Q01 |
- Hyperbolic functions
Q02 |
- Graphs of hyperbolic functions
Q03 |
- Compare y=sin(x) and y=sinh(x)
Q04 |
- The curve of y=sin(x) and y=sinh(x) are different. Why name sinh(x) ?
Q05 |
- Prove taht sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
Q06 |
- Prove that sinh(x)^2 - cosh(x)^2 = -1
Q07 |
- If y=sinh(x) then y'=cosh(x)
Q08 |
- If y = cosh(x) then y' = sinh(x)
Q09 |
- Prove that sinh(2*x) = 2*sinh(x)*cosh(x)
Q10 |
-
Answers
Q01. Hyperbolic functions
Definitions
1. sinh(x) = (exp(x)-exp(-x))/2
2. cosh(x) = (exp(x)+exp(-x))/2
3. tanh(x) = sinh(x)/cosh(x)
4. csch(x) = 1/sinh(x)
5. sech(x) = 1/cosh(x)
6. coth(x) = 1/tanh(x)
Go to Begin
Q02. Graphs of hyperbolic functions
Diagrams
Click start and select subject
y=sinh(x) .... Program 06 01
y=cosh(x) .... Program 06 02
y=tanh(x) .... Program 06 03
y=csch(x) .... Program 06 04
y=sech(x) .... Program 06 05
y=coth(x) .... Program 06 06
See also PM section 14
Go to Begin
Q03. Compare y=sin(x) and y=sinh(x)
Diagram
Click start and select subject
y=sin(x) ........ Program 05 01
y=sinh(x) ....... Program 06 01
See also PM Section 14
Go to Begin
Q04. The curve of y=sin(x) and y=sinh(x) are different. Why name sinh(x) ?
Answer based similar identities
1. Sine function
sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y)
sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y)
2. Hyperbolic Sine function
sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
sinh(x-y) = sinh(x)*cosh(y) - cosh(x)*sinh(y)
Answer based similar identities
sin(x)^2 + cos(x)^2 = 1 is unit circle
sinh(x)^2 - cosh(x)^2 = -1 is unit hyperbola
Reference : See PM section 14
Go to Begin
Q05. Prove taht sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
Proof : Use exponential formula
lhs = sinh(x+y) = (exp(x+y)-exp(-x-y))/2
= [exp(x)*exp(y) - exp(-x)*exp(-y)]/2
rhs = (exp(x)-exp(-x))*(exp(y)+exp(-y))/4
+ (exp(x)+exp(-x))*(exp(y)-exp(-y))/4
= [exp(x)*exp(y) + exp(x)*exp(-y) - exp(-x)*exp(y) - exp(-x)*exp(-y)]/4
+ [exp(x)*exp(y) - exp(x)*exp(-y) + exp(y)*exp(-x) - exp(-x)*exp(-y)]/4
= [exp(x)*exp(y) - exp(-x)*exp(y)]/2
lhs = rhs
Go to Begin
Q06. Prove that sinh(x)^2 - cosh(x)^2 = -1
Proof : Use exponential formula
lhs = (exp(x)-exp(-x))/2)^2 - (exp(x)+exp(-x))/2)^2
= [exp(2*x) - 2 + exp(-2*x)]/4 - [exp(2*x) + 2 +exp(-2*x)]/4
= -1 = rhs
Locus of x = sinh(t) and y = cosh(t)
x^2 - y^2 = sinh(t)^2 - cosh(t)^2 = -1.
Hence the locus is unit hyperbola.
Go to Begin
Q07. If y=sinh(x) then y'=cosh(x)
Proof
y = sinh(x) = (exp(x)-exp(-x))/2
y'= (exp(x)+exp(-x))/2 = cosh(x)
Note
if y=sin(x) and then y'=cos(x)
This another reason we name the function as sinh(x)
Go to Begin
Q08. If y=cosh(x) then y'=sinh(x)
Proof
y = cosh(x) = (exp(x)+exp(-x))/2
y'= (exp(x)-exp(-x))/2 = sinh(x)
Note
if y=cos(x) and then y'=sin(x)
This another reason we name the function as cosh(x)
Go to Begin
Q09. Prove that sin(2*x) = 2*sinh(x)*cosh(x)
Proof : Using sinh(x+y) = sinh(x)*cosh(y) + cosh(x)*sinh(y)
Let x = y
Hence sinh(2*x) = 2*sinh(x)*cosh(y)
Proof : Using exponent law
sinh(x) = (e^x - e^(-x))/2
cosh(x) = (e^x + e^(-x))/2
Hence 2*sinh(x)*cosh(x)
= 2*(e^x - e^(-x))*(e^x + e^(-x))/4
= (e^(2*x) - e^(-2*x))/2
= sinh(2*x)
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih. Nova Scotia, Canada.