Mathematics Dictionary
Dr. K. G. Shih
Integral Table
Questions
Read Symbol defintion
Q01 |
- Derivative : Polynomial and rational functions
Q02 |
- Derivative : Trigonometric functions
Q03 |
- Derivative : Exponential family
Q04 |
- Derivative : Logarthemic familay
Q05 |
- Integral : Polynomial and rational functions
Q06 |
- Integral : Trigonometrical functions
Q07 |
- Integral : Exponential family
Q08 |
- Integral : Logarithmic family
Q09 |
-
Q10 |
-
Answers
Q01. Derivative : Polynomial and rational functions
Power with positve or negative integer
d/dx(x^n) = n*x^(n-1)
d/dx(x^(-1)) = -1*x^(-2)
d/dx(x^(-2)) = -2*x^(-3)
Rational
d/dx(1/(1 + x^2) = arctan(x)
Irrational
d/dx(x^(+1/2)) = (+1/2)*(x^(-1/2)
d/dx(x^(-1/2)) = (-1/2)*(x^(-3/2)
d/dx(Sqr(x)) = d/dx(x^(+1/2)) = (+1/2)*(x^(-1/2)
d/dx(1/Sqr(1-x^2) = arcsin(x)
Chain rule
Example : If y = u^5, find dy/dx
Wrong answer
dy/dx = d/dx(u^5) = 5*u^4
y is function of u
d/dx is with respect x not to u
We can not use power rule in this case.
Correct answer : Use chain rule
d/dx(u^5) = (d/du(u^5))*du/dx
d/dx(u*5) = (4*u^4)*(du/dx)
Go to Begin
Q02. Derivative : Trigonometric functions
d/dx(sin(x)) = +cos(x)
d/dx(cos(x)) = -sin(x)
d/dx(tan(x)) = +sec(x)^2
d/dx(arcsin(x)) = +1/Sqr(1 - x^2)
d/dx(arccos(x)) = -1/Sqr(1 - x^2)
d/dx(arctan(x)) = +1/(1 + x^2)
Go to Begin
Q03. Derivative : Exponential familay
d/dx(e^x) = e^x
d/dx(sinh(x)) = +cosh(x)
d/dx(cosh(x)) = +sinh(x)
d/dx(tanh(x)) = +sech(x)^2
d/dx(csch(x)) = -csch(x)*coth(x)
d/dx(sech(x)) = -sech(x)*tanh(x)
d/dx(coth(x)) = +csch(x)^2
Go to Begin
Q04. Deriative : Logarithic family
d/dx(ln(x)) = 1/x
d/dx(arcsinh(x)) = +1/Sqr(x^2 + 1)
d/dx(arccosh(x)) = +1/Sqr(x^2 - 1)
d/dx(arctanh(x)) = +1/(1 - x^2)
d/dx(arccsch(x)) = +1/(x*Sqr(x^2 + 1))
d/dx(arcsech(x)) = +1/(x*Sqr(x^2 - 1))
d/dx(arccoth(x)) = -1/(1 - x^2)
Go to Begin
Q05. Integral : Polynomial and rational functions
∫
(x^n)dx = (x^(n+1))/(n+1) + C and n NE -1
∫
(1/(1+x^2))dx = arctan(x)
Go to Begin
Q06. Intgral : Trigonometrical function
Function
∫
sin(x)dx = -cos(x) + C
∫
cos(x)dx = +sin(x) + C
∫
tan(x)dx = -ln(cos(x) + C
∫
csc(x)dx = +ln(csc(x) - cot(x)) + C
∫
sec(x)dx = +ln(sec(x) + tan(x)) + C
∫
cot(x)dx = +ln(sin(x)) + C
Inverse function
∫
arcsin(x)dx = +1/Sqr(1 - x^2) + C
∫
arccos(x)dx = -1/Sqr(1 - x^2) + C
∫
arctan(x)dx = +1/(1 + x^2) + C
∫
arccsc(x)dx = +1/(x*Sqr(x^2 - 1)) + C
∫
arcsec(x)dx = -1/(x*Sqr(x^2 - 1)) + C
∫
arccot(x)dx = -1/(1+x^2) + C
Go to Begin
Q07. Integral : Exponential family
∫
exp(x)dx = exp(x) + C
∫
sinh(x)dx = cosh(x) + C
∫
cosh(x)dx = sinh(x) + C
∫
tanh(x)dx = ln(cosh(x)) + C
∫
csch(x)dx = ln(tanh(x/2)) + C
∫
sech(x)dx = arctan(sinh(x)) + C
∫
coth(x)dx = ln(sinh(x) + C
Go to Begin
Q08. Integral : Logaithmic familay
∫
arcsinh(x)dx = x*arcsinh(x) - Sqr(x^2 + 1)
∫
arccosh(x)dx = x*arccosh(x) - Sqr(x^2 - 1)
∫
arctanh(x)dx = x*arctanh(x) + ln(1 - x^2)/2
∫
arccsch(x)dx = x*arccsch(x) + arcsinh(x)
∫
arcsech(x)dx = x*arcsech(x) - arccos(z)
∫
arccoth(x)dx = x*arccoth(x) + ln)/(x^2 - 1)/2
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.