Counter
Mathematics Dictionary
Dr. K. G. Shih

Integral Table
Questions


Answers


Q01. Derivative : Polynomial and rational functions
Power with positve or negative integer
  • d/dx(x^n) = n*x^(n-1)
  • d/dx(x^(-1)) = -1*x^(-2)
  • d/dx(x^(-2)) = -2*x^(-3)
Rational
  • d/dx(1/(1 + x^2) = arctan(x)
Irrational
  • d/dx(x^(+1/2)) = (+1/2)*(x^(-1/2)
  • d/dx(x^(-1/2)) = (-1/2)*(x^(-3/2)
  • d/dx(Sqr(x)) = d/dx(x^(+1/2)) = (+1/2)*(x^(-1/2)
  • d/dx(1/Sqr(1-x^2) = arcsin(x)
Chain rule
  • Example : If y = u^5, find dy/dx
  • Wrong answer
    • dy/dx = d/dx(u^5) = 5*u^4
    • y is function of u
    • d/dx is with respect x not to u
    • We can not use power rule in this case.
  • Correct answer : Use chain rule
    • d/dx(u^5) = (d/du(u^5))*du/dx
    • d/dx(u*5) = (4*u^4)*(du/dx)

Go to Begin

Q02. Derivative : Trigonometric functions

  • d/dx(sin(x)) = +cos(x)
  • d/dx(cos(x)) = -sin(x)
  • d/dx(tan(x)) = +sec(x)^2
  • d/dx(arcsin(x)) = +1/Sqr(1 - x^2)
  • d/dx(arccos(x)) = -1/Sqr(1 - x^2)
  • d/dx(arctan(x)) = +1/(1 + x^2)

Go to Begin

Q03. Derivative : Exponential familay
  • d/dx(e^x) = e^x
  • d/dx(sinh(x)) = +cosh(x)
  • d/dx(cosh(x)) = +sinh(x)
  • d/dx(tanh(x)) = +sech(x)^2
  • d/dx(csch(x)) = -csch(x)*coth(x)
  • d/dx(sech(x)) = -sech(x)*tanh(x)
  • d/dx(coth(x)) = +csch(x)^2

Go to Begin

Q04. Deriative : Logarithic family
  • d/dx(ln(x)) = 1/x
  • d/dx(arcsinh(x)) = +1/Sqr(x^2 + 1)
  • d/dx(arccosh(x)) = +1/Sqr(x^2 - 1)
  • d/dx(arctanh(x)) = +1/(1 - x^2)
  • d/dx(arccsch(x)) = +1/(x*Sqr(x^2 + 1))
  • d/dx(arcsech(x)) = +1/(x*Sqr(x^2 - 1))
  • d/dx(arccoth(x)) = -1/(1 - x^2)

Go to Begin

Q05. Integral : Polynomial and rational functions

  • (x^n)dx = (x^(n+1))/(n+1) + C and n NE -1
  • (1/(1+x^2))dx = arctan(x)

Go to Begin

Q06. Intgral : Trigonometrical function
Function
  • sin(x)dx = -cos(x) + C
  • cos(x)dx = +sin(x) + C
  • tan(x)dx = -ln(cos(x) + C
  • csc(x)dx = +ln(csc(x) - cot(x)) + C
  • sec(x)dx = +ln(sec(x) + tan(x)) + C
  • cot(x)dx = +ln(sin(x)) + C
Inverse function
  • arcsin(x)dx = +1/Sqr(1 - x^2) + C
  • arccos(x)dx = -1/Sqr(1 - x^2) + C
  • arctan(x)dx = +1/(1 + x^2) + C
  • arccsc(x)dx = +1/(x*Sqr(x^2 - 1)) + C
  • arcsec(x)dx = -1/(x*Sqr(x^2 - 1)) + C
  • arccot(x)dx = -1/(1+x^2) + C

Go to Begin

Q07. Integral : Exponential family
  • exp(x)dx = exp(x) + C
  • sinh(x)dx = cosh(x) + C
  • cosh(x)dx = sinh(x) + C
  • tanh(x)dx = ln(cosh(x)) + C
  • csch(x)dx = ln(tanh(x/2)) + C
  • sech(x)dx = arctan(sinh(x)) + C
  • coth(x)dx = ln(sinh(x) + C

Go to Begin

Q08. Integral : Logaithmic familay

  • arcsinh(x)dx = x*arcsinh(x) - Sqr(x^2 + 1)
  • arccosh(x)dx = x*arccosh(x) - Sqr(x^2 - 1)
  • arctanh(x)dx = x*arctanh(x) + ln(1 - x^2)/2
  • arccsch(x)dx = x*arccsch(x) + arcsinh(x)
  • arcsech(x)dx = x*arcsech(x) - arccos(z)
  • arccoth(x)dx = x*arccoth(x) + ln)/(x^2 - 1)/2

Go to Begin

Q09. Answer


Go to Begin

Q10. Answer


Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1