Mathematics Dictionary
Dr. K. G. Shih
Logarithm ln(x)
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Properties of y = ln(x)
Q02 |
- Find derivative of y = ln(x)
Q03 |
- Series of y = ln(1 + x)
Q04 |
- Series of y = ln(1 - x)
Q05 |
- Formula
Q01. Properties of y = ln(x)
Diagram of y = ln(x)
y = ln(x) and inverse
Deifintion of y = ln(x)
If y = e^x then x = ln(y)
If y = ln(x) then x = e^(ln(y))
Composite function
ln(e^x) = x
e^(ln(x)) = x.
Value of y is between 0 and +infinite
Properties of Y = e^x
1. Domain : real values of x > 0
2. Range : -infinite to +infinite
3. The curve is always increasing (y' > 0) 4. The curve is concave downward (y" < 0) 5. It is the inverse of y = e^x
Special values
ln(1) = 0
ln(e) = 1
Go to Begin
Q02. Find derivative of y = ln(x)
Find y'
Calculus
Find d/dx(ln(x))
y = ln(x), 1st serivative = 1/x
y = ln(x), 2nd serivative = -1/(x^2)
y = ln(x), 3rd serivative = +2/(x^3)
Go to Begin
Q03. Series of ln(1 + x)
Binomial Theory
(1 - x)^n = 1 + C(n,1)*(-x) + C(n,2)*(-x)^2 + ....
Let n = -1, then
C(n, 1) = n = -1
C(n, 2) = n*(n - 1)/(2!) = 1
C(n, 3) = n*(n - 1)*(n - 2) = -1
1/(1 - x) = 1 - (-x) + ((-1)*(-1 - 1)/(2!))*((-x)^2) + ....
= 1 + x + x^2 + x^3 + .....
Series of ln(1 - x)
Since
∫
[1/(1 - x)]dx = -ln(1 - x)
Using binomial theory we have
arctan(x) =
∫
[1/(1 - x)]dx
=
∫
[1 + x + x^2 + x^3 + ....]dx
= x + (x^2)/2 + (x^3)/3 + .....
Go to Begin
Q04. Series of ln(1 + x)
Binomial Theory
(1 + x)^n = 1 + C(n,1)*(x) + C(n,2)*(x)^2 + ....
Let n = -1, then
C(n, 1) = n = -1
C(n, 2) = n*(n - 1)/(2!) = 1
C(n, 3) = n*(n - 1)*(n - 2) = -1
1/(1 - x) = 1 - (x) + ((-1)*(-1 - 1)/(2!))*((x)^2) + ....
= 1 - x + x^2 - x^3 + .....
Series of ln(1 + x)
Since
∫
[1/(1 + x)]dx = ln(1 + x)
Using binomial theory we have
arctan(x) =
∫
[1/(1 + x)]dx
=
∫
[1 - x + x^2 - x^3 + ....]dx
= x - (x^2)/2 + (x^3)/3 - .....
Go to Begin
Q05. Formula
e^(ln(x)) = x
ln(e^x) = x
If y = ln(x), y' = 1/x
If y = ln(x), y" = -1/(x^2)
∫
[1/x]dx = ln(x)
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.