Counter
Mathematics Dictionary
Dr. K. G. Shih

Partial Fractions
Subjects


Answers


Q01. Introduction
  • Why do we need partial fractions ?
  • One reason is to find integral.
  • Eample : Find dx/(x^2-6*x+8)
    • Sine x^2 - 6*x + 8 = (x-2)*(x-4)
    • Hence 1/(x^2 - 6*x + 8) = A/(x-2) + B/(x-4)
    • Then we can find the integral
    • dx/(x^2-6*x+8) = (A*dx)/(x-2) + (A*dx)/(x-4)

Go to Begin

Q02. Rules
  • The numerator in partial fraction is less one power than denominator
  • Example 1 : (A*x + B)/(a*x^2 + b*x + c)
  • Example 2 : (A*x^2 + B*x + C)/(a*x^3 + b*x^2 + c*x + d)

Go to Begin

Q03. Example : Find partial fraction of 1/(x^2 - 6*x + 8)
  • Since x^2 - 6*x + 8 = (x-2)*(x-4)
  • Hence 1/(x^2 - 6*x + 8) = A/(x-2) + B/(x-4)
  • Both sides times (x^2 - 6*x + 8)
  • 1 = A*(x-4) + B*(x-2)
  • 1 = (A+B)*x - (4*A+2*B)
  • Hence A+B = 0 ............. (1)
  • 4*A + 2*B =-1 ............. (2)
  • Solve (1) and (2) we have A = -1/2 and B = 1/2
  • Hence 1/(x^2 - 6*x + 8) = -1/(2*(x-2)) + 1/(2*(x-4))

Go to Begin

Q04. Find partial fraction of 1/(1-x^3)
  • Since 1 - x^3 = (1-x)*(1+x+x^2)
  • Hence 1/(1-x^3) = A/(1-x) + (B*x+C)/(1+x+x^2)
  • Both sides times (1-x^3)
  • 1 = A*(1+x+x^2) + (B*x+C)*(1-x)
  • 1 = (A+C) + (A+B-C)*x + (A-B)*x^2
  • Hence A+C = 1 ....................... (1)
  • A+B-C = 0 ........................... (2)
  • A-B = 0 ............................. (3)
  • (2)+(3) we have 2*A-C = 0 ........... (4)
  • (1)+(4) we have 3*A = 1 and A = 1/3
  • Hence B = A = 1/3
  • Hence C = 1-A = 2/3
  • Hence 1/(1-x^3) = 1/(3*(1-x)) + (1*x+2)/(1+x+x^2)

Go to Begin

Q05. Answer

Go to Begin

Q06. Answer

Go to Begin

Q07. Answer

Go to Begin

Q08. Answer

Go to Begin

Q09. Answer

Go to Begin

Q10. Answer

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

1