Mathematics Dictionary
Dr. K. G. Shih
Partial Fractions
Subjects
Read Symbol defintion
Q01 |
- Introduction
Q02 |
- Rules
Q03 |
- Find partial fraction of 1/(x^2-6*x+8)
Q04 |
- Find partial fraction of 1/(1-x^3)
Q05 |
-
Q06 |
-
Q07 |
-
Q08 |
-
Q09 |
-
Q10 |
-
Answers
Q01. Introduction
Why do we need partial fractions ?
One reason is to find integral.
Eample : Find
∫
dx/(x^2-6*x+8)
Sine x^2 - 6*x + 8 = (x-2)*(x-4)
Hence 1/(x^2 - 6*x + 8) = A/(x-2) + B/(x-4)
Then we can find the integral
∫
dx/(x^2-6*x+8) =
∫
(A*dx)/(x-2) +
∫
(A*dx)/(x-4)
Go to Begin
Q02. Rules
The numerator in partial fraction is less one power than denominator
Example 1 : (A*x + B)/(a*x^2 + b*x + c)
Example 2 : (A*x^2 + B*x + C)/(a*x^3 + b*x^2 + c*x + d)
Go to Begin
Q03. Example : Find partial fraction of 1/(x^2 - 6*x + 8)
Since x^2 - 6*x + 8 = (x-2)*(x-4)
Hence 1/(x^2 - 6*x + 8) = A/(x-2) + B/(x-4)
Both sides times (x^2 - 6*x + 8)
1 = A*(x-4) + B*(x-2)
1 = (A+B)*x - (4*A+2*B)
Hence A+B = 0 ............. (1)
4*A + 2*B =-1 ............. (2)
Solve (1) and (2) we have A = -1/2 and B = 1/2
Hence 1/(x^2 - 6*x + 8) = -1/(2*(x-2)) + 1/(2*(x-4))
Go to Begin
Q04. Find partial fraction of 1/(1-x^3)
Since 1 - x^3 = (1-x)*(1+x+x^2)
Hence 1/(1-x^3) = A/(1-x) + (B*x+C)/(1+x+x^2)
Both sides times (1-x^3)
1 = A*(1+x+x^2) + (B*x+C)*(1-x)
1 = (A+C) + (A+B-C)*x + (A-B)*x^2
Hence A+C = 1 ....................... (1)
A+B-C = 0 ........................... (2)
A-B = 0 ............................. (3)
(2)+(3) we have 2*A-C = 0 ........... (4)
(1)+(4) we have 3*A = 1 and A = 1/3
Hence B = A = 1/3
Hence C = 1-A = 2/3
Hence 1/(1-x^3) = 1/(3*(1-x)) + (1*x+2)/(1+x+x^2)
Go to Begin
Q05. Answer
Go to Begin
Q06. Answer
Go to Begin
Q07. Answer
Go to Begin
Q08. Answer
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.