Counter
Mathematics Dictionary
Dr. K. G. Shih

Triangular Number
Questions


  • Q01 | - Triangular number in Pascal triangle
  • Q02 | - Triangular number : Patterns
  • Q03 | - Triangular number : Prove T(n) = n*(n+1)/2
  • Q04 | - Triangular number : Prove Sum[T(n)] = n*(n+1)*(n+2)/6
  • Q05 | - Triangular number : Prove that Sum[C(n+1),2)] = C(n+2,3)
  • Q06 | - Using Sum[n*(n+1)/2] find Sum[n^2] = n*(n+1)*(2*n+1)/6
  • Q07 | -
  • Q08 | -
  • Q09 | -
  • Q10 | -

  • Answers


    Q01. Triangular number in Pascal triangle
    Pascal triangle
          C1 C2 C3 C4 C5 C6 C7 C8 ....
    
      R1  1
      R2  1  1
      R3  1  2  1
      R4  1  3  3  1
      R5  1  4  6  4  1
      R6  1  5 10 10  5  1
      R7  1  6 15 20 15  6  1
      R8  1  7 21 35 35 21  7  1
      R9  1  8 28 56 70 56 28  8  1
    
    Triangular number
      1. Triandular numbers in column 3 (C3)
      2. The numbers : 1, 3, 6, 10, 15, 21, 28, ...
      3. 1st Diff    :    2, 3,  4,  5,  6,  7, ...
      4. 2nd diff    :       1,  1,  1,  1,  1, ...
    

    Go to Begin

    Q02.Triangular number : Patterns
    Pattern
        1    2     6      10 
    
        *    *     *       *
            * *   * *     * *
                 * * *   * * *
                        * * * *
    

    Go to Begin

    Q03. Triangular number : Find T(n) = n*(n+1)/2

    T(n) = n*(n+1)/2
       T(1) =  1
       T(2) =  3 = 1 + 2
       T(3) =  6 = 1 + 2 + 3
       T(4) = 10 = 1 + 2 + 3 + 4
       ....
       T(n) = Sum[n] = n*(n+1)/2
    

    Go to Begin

    Q04. Triangular number : Sum[T(n)] = n*(n+1)*(n+2)/6

    Proof
       S(n) = n*(n+1)/2 ........................... (1)
       S(n^2) = n*(n+1)*(2*n+1)/6 ................. (2)
       Hence
       Sum[T(n)] = Sum[n*(n+1)/2]
                 = (1/2)*(Sum[n^2] + Sum[n]) ...... (3)
       Substitute (1) and (2) into (3) and simplify we have
       Sum[T(n)] = n*(n+1)*(n+2)/6
    

    Go to Begin

    Q05. Triangular number : Sum[C(n+1,2)] = C(n+2,3)

       1. Binomial expansion coefficients
          C(m,r) = m*(m-1)*(m-2) .... (m-r+1)/r!
       2. Hence (n+1)*n/2 = C(n+1,2)
                (n+2)*(n+1)*n/6 = C(n+2,3)
       3. From Q04 we have Sum[C(n+1,2)] = C(n+2,3)
    

    Go to Begin

    Q06. Using Sum[n*(n+1)/2] find Sum[n^2] = n*(n+1)*(2*n+1)/6

    Proof
      Sum[n*(n+1)/2] = (Sum[n] + Sum[n^2])/2 ............ (1)
      Since Sum[n] = n*(n+1)/2 .......................... (2)
            Sum[n*(n+1)/2] = n*(n+1)*(n+2)/6 ............ (3)
      From (1) Sum[n^2] = 2*Sum[n*(n+1)/2] - Sum[n] ..... (4)
      Substitute (2) and (3) into (4) and simplify we have
    
      Sum[n^2] = 2*n*(n+1)*(n+2)/6 - n*(n+1)/2
               = n*(n+1)*(2*n+4-3)/6
               = n*(n+1)*(2*n+1)/6
    
    Reference
      More method to prove this formula are given in keyword series
      about Sum[n^2] in www.b192907.com
    

    Go to Begin

    Q07. Answer

    Go to Begin

    Q08. Answer

    Go to Begin

    Q09. Answer

    Go to Begin

    Q10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1