Counter
Mathematics Dictionary
Dr. K. G. Shih

Tetrahedral Numbers
Questions


  • Q01 | - Pentatope number in Pascal triangle
  • Q02 | - Pentatope number : Patterns
  • Q03 | - Pentatope number : Prove T(n) = n*(n+1)*(n+2)/6
  • Q04 | - Pentatope number : Prove S(n) = n*(n+1)*(n+2)*(n+3)/4!
  • Q05 | - Pentatope number : Prove that Sum[C(n+2),3)] = C(n+3,4)
  • Q06 | - Using Sum[n*(n+1)*(n+2)*(n+3)/24] find Sum[n^4]
  • Q07 | - Pentatope number : Pattern
  • Q08 | -
  • Q09 | -
  • Q10 | -

  • Answers


    Q01. Tetrahedral number in Pascal triangle
    Pascal triangle
          C1 C2 C3 C4 C5 C6 C7 C8 ....
    
      R1  1
      R2  1  1
      R3  1  2  1
      R4  1  3  3  1
      R5  1  4  6  4  1
      R6  1  5 10 10  5  1
      R7  1  6 15 20 15  6  1
      R8  1  7 21 35 35 21  7  1
      R9  1  8 28 56 70 56 28  8  1
    
    Pentatope number
     1. Pentatope numbers in column 5 (C5)
     2. The numbers : 1, 5, 15, 35, 70, 126, 210, ... 
     2. 1st Diff    : 1, 4, 10, 20, 35,  56,  84, ...
     3. 2nd Diff    : 1, 3,  6, 10, 15,  21,  28, ...
     4. 3rd Diff    : 1, 2,  3,  4,  5,   6,   7, ...
     5. 4th Diff    : 1, 1,  1,  1,  1,   1,   1, ...
    

    Go to Begin

    Q02. Find Pentatope number sequence using Tetrahedral numbers
    Method
      Pentatope  sequence : 1   5  15
      Tetraheral sequence : 1   4  10   20  35   56   84 .....
    
      2nd number of tetrahedral number is  1 +  4 =   5
      3rd number of tetrahedral number is  5 + 10 =  15
      4th number of tetrahedral number is 15 + 20 =  35
      5th number of tetrahedral number is 35 + 35 =  70
      2nd number of tetrahedral number is 70 + 56 = 126
                                           |    |     |
                                           |    |     Pentatope Seq 
                                           |    Tetrahedral numbers
                                           Pentatope seq
    

    Go to Begin

    Q03. Pentatope number : T(n) = n*(n+1)*(n+2)*(n+3)/24

    Prove nth term is T(n) = n*(n+1)*(n+2)*(n+3)/24
       T(1) =  1
       T(2) =  5 = 1 + 4
       T(3) = 15 = 1 + 4 + 10
       T(4) = 35 = 1 + 4 + 10 + 20
       T(5) = 70 = 1 + 4 + 10 + 20 + 35 (Sum of tetrahedral numbers)
       ....
       T(n) = Sum[n*(n+1)*(n+2)/6] = n*(n+1)*(n+2)*(n+3)/24
    

    Go to Begin

    Q04. Pentatope number : Sum[T(n)] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!

    Proof
       S(n)   = n*(n+1) ........................... (1)
       S(n^2) = n*(n+1)*(2*n+1)/6 ................. (2)
       S(n^3) = (n*(n+1)/2)^2 ..................... (3)
       S(n^4) =                                     (4)
       Sum[T(n)] = Sum[n*(n+1)*(n+2)*(n+3)/24]
                 = ((Sum[n^4 + ...)] .............. (5)
       Substitute (1), (2), (3), (4) into (5) and simplify we have
       Sum[T(n)] = Sum[n*(n+1)*(n+2)*(n+3)/24]
                 = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
    

    Go to Begin

    Q05. Pentatope : Sum[C(n+3,4)] = C(n+4,5)

       1. Binomial expansion coefficients
          C(m,r) = m*(m-1)*(m-2) .... (m-r+1)/r!
       2. Hence C(n+3,4) = (n+3)*(n+2)*(n+1)*n/4!
                C(n+4,5) = (n+4)*(n+3)*(n+2)*(n+1)*n/5!
       3. Hence from Q04 we have Sum[C(n+3,4)] = C(n+4,5)
    

    Go to Begin

    Q06. Using Sum[n*(n+1)*(n+2)*(n+3)/4!] find Sum[n^4]

    Proof : We need following formula
      Sum[n]   = n*(n+1)/2
      Sum[n^2] = n*(n+1)*(n+2)/6 
      Sum[n^3] =
      Sum[n*(n+1)*(n+2)*(n+3)/24] = n*(n+1)*(n+2)*(n+3)*(n+4)/5!
    
    Reference
    
      More methods to prove this formula are given in keyword series
      about Sum[n^4] in www.b192907.com
    

    Go to Begin

    Q07. Tetrahedral number : Pattern
    The pattern in tetrhedron (4 surfaces, each is triangle)
        *    *     * ----- 1 = top          * --------- 1 = top
    
             *     *                        *
            * *   * * ---- 3 = middle      * * -------- 2nd layer
    
                   *                        *
                  * *                      * *
                 * * * --- 6 = bottom     * * * ------- 3rd layer
    
                                            *
                                           * *
                                          * * *
                                         * * * * ------ 4th layer = base
    
        1  4 = 1+3  10 = 1+3+6             20 = 1+3+6+10
    
       
    

    Go to Begin

    Q08. Answer

    Go to Begin

    Q09. Answer

    Go to Begin

    Q10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1