Mathematics Dictionary
Dr. K. G. Shih
The Story of Pi
Questions
Symbol Defintion
Sqr(x) = Square root of x
Q01 |
- arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ....
Q02 |
- (pi)^2 = 6*(1 + 1/(2^2) + 1/(3^2) + ......)
Q03 |
- (pi)^2 = 8*(1 + 1/(3^2) + 1/(5^2) + ......)
Q04 |
- Archimedes polygon method to find pi
Q05 |
- Machine-like formula
Q06 |
-
Q07 |
-
Q08 |
-
Q09 |
-
Q10 |
-
Answers
Q01. arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ....
Series of pi
Since arctan(1) = pi/4
Hence pi/4 = 1 - 1/3 + 1/5 - 1/7 + .....
This series is simple but it coverge very slow
Go to Begin
Q02. (pi)^2 = 6*(1 + 1/(2^2) + 1/(3^2) + 1/(4^2) + .....
Keywords
1. To prove it, we use series of sin(x)
2. We also need equation of theory
Proof
Sin(x) = x - (x^3)/(3!) + (x^5)/(5!)- (x^7)/(7!) + ....
If sin(x) = 0, the roots are r0 = 0, r1 = pi, r2 = 2*pi, r3 = 3*pi, ....
Hence r1, r2, r3, ... are roots of 1 - (x^2)/6 + (x^4)/120 - ..... = 0
Let x^2 = u,
Then the equation becomes 1 - u/6 + (u^2)/120 - .... = 0
The roots of equation : u1 = (pi)^2, u2 = (2*pi)^2, u3 = (3*pi)^2
Equation theory
Equation : a*x^n + b*x^(n-1) + ..... + p*x + q = 0
Roots are x1, x2, x3, ....
Coefficient of x and roots : 1/x1 + 1/x2 + 1/x3 + ..... = p/q
Hence coefficient and roots u
1/u1 + 1/u2 + 1/u3 + ..... = -(-1/6)/1
1/(pi^2) + 1/((2*pi)^2) + 1/((3*pi)^2) + 1/((4*pi)^2) + .... = 1/6
Multiply (pi)^2 on both sides
1 + 1/(2^2) + 1/(3^2) + ..... = ((pi)^2)/6
Go to Begin
Q03. (pi)^2 = 8*(1 + 1/(3^2) + 1/(5^2) + 1/(7^2) + ....
Keywords
1. To prove it, we use series of cos(x)
2. We also need equation of theory
Proof
cos(x) = 1 - (x^2)/(2!) + (x^4)/(4!)- (x^6)/(6!) + ....
If cos(x) = 0, the roots are r1 = pi/2, r2 = 3*pi/2, r3 = 5*pi/2, ....
Hence r1, r2, r3, ... are roots of 1 - (x^2)/2 + (x^4)/24 - ..... = 0
Let x^2 = u,
Then the equation becomes 1 - u/2 + (u^2)/24 - .... = 0
The roots of equation : u1 = (pi/2)^2, u2 = (3*pi/2)^2, u3 = (5*pi/2)^2
Equation theory
Equation : a*x^n + b*x^(n-1) + ..... + p*x + q = 0
Roots are x1, x2, x3, ....
Coefficient of x and roots : 1/x1 + 1/x2 + 1/x3 + ..... = p/q
Hence coefficient and roots u
1/u1 + 1/u2 + 1/u3 + ..... = -(-1/2)/1
1/((pi/2)^2) + 1/((3*pi/2)^2) + 1/((5*pi/2)^2) + .... = 1/2
Multiply (pi/2)^2 on both sides
1 + 1/(3^2) + 1/(5^2) + ..... = ((pi/2)^2)/2 = ((pi)^2)/8
Go to Begin
Q04. Archimedes polygon method to find pi
Formula based Archimedes polygon method
pi = C*sin(A)
Where C = (2^n)/2 and A = 360/(2^n)
Where 2^n is the number of sides of polygon
Example 1 : n = 3
pi = ((2^3)/2)*sin(45) = 4*Sqr(2)/2 = 2*Sqr(2)
Example 1 : n = 5 and use half angle formula
pi = ((2^5)/2)*sin(360/32)
= 16*Sqr((1 - cos(360/16))/2)
= (16/Sqr(2))*Sqr(1 - cos(360/16))
= (16/Sqr(2))*Sqr(1 - Sqr(1 + cos(360/8))/2))
= 8*Sqr(2 - Sqr(2 + Sqr(2))) = 3.121445
Go to Begin
Q05. Machine-like formula
Formula
1. Euler's formula : pi/4 = arctan(1/2) + arctan(1/3)
2. Hermann's formula : pi/4 = 2*arctan(1/3) - arctan(1/7)
3. Hutton's formula : pi/4 = 2*arctan(1/3) + arctan(1/7)
Go to Begin
Q06. Answer
Go to Begin
Q07. Answer
Go to Begin
Q08. Answer
Go to Begin
Q09. Answer
Go to Begin
Q10. Answer
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.