Counter
Mathematics Dictionary
Dr. K. G. Shih

The Story of Pi
Questions


  • Q01 | - arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ....
  • Q02 | - (pi)^2 = 6*(1 + 1/(2^2) + 1/(3^2) + ......)
  • Q03 | - (pi)^2 = 8*(1 + 1/(3^2) + 1/(5^2) + ......)
  • Q04 | - Archimedes polygon method to find pi
  • Q05 | - Machine-like formula
  • Q06 | -
  • Q07 | -
  • Q08 | -
  • Q09 | -
  • Q10 | -

  • Answers


    Q01. arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ....

    Series of pi
    • Since arctan(1) = pi/4
    • Hence pi/4 = 1 - 1/3 + 1/5 - 1/7 + .....
    • This series is simple but it coverge very slow

    Go to Begin

    Q02. (pi)^2 = 6*(1 + 1/(2^2) + 1/(3^2) + 1/(4^2) + .....

    Keywords
    • 1. To prove it, we use series of sin(x)
    • 2. We also need equation of theory
    Proof
    • Sin(x) = x - (x^3)/(3!) + (x^5)/(5!)- (x^7)/(7!) + ....
    • If sin(x) = 0, the roots are r0 = 0, r1 = pi, r2 = 2*pi, r3 = 3*pi, ....
    • Hence r1, r2, r3, ... are roots of 1 - (x^2)/6 + (x^4)/120 - ..... = 0
    • Let x^2 = u,
        Then the equation becomes 1 - u/6 + (u^2)/120 - .... = 0
      • The roots of equation : u1 = (pi)^2, u2 = (2*pi)^2, u3 = (3*pi)^2
    • Equation theory
      • Equation : a*x^n + b*x^(n-1) + ..... + p*x + q = 0
      • Roots are x1, x2, x3, ....
      • Coefficient of x and roots : 1/x1 + 1/x2 + 1/x3 + ..... = p/q
    • Hence coefficient and roots u
      • 1/u1 + 1/u2 + 1/u3 + ..... = -(-1/6)/1
      • 1/(pi^2) + 1/((2*pi)^2) + 1/((3*pi)^2) + 1/((4*pi)^2) + .... = 1/6
      • Multiply (pi)^2 on both sides
      • 1 + 1/(2^2) + 1/(3^2) + ..... = ((pi)^2)/6

    Go to Begin

    Q03. (pi)^2 = 8*(1 + 1/(3^2) + 1/(5^2) + 1/(7^2) + ....

    Keywords
    • 1. To prove it, we use series of cos(x)
    • 2. We also need equation of theory
    Proof
    • cos(x) = 1 - (x^2)/(2!) + (x^4)/(4!)- (x^6)/(6!) + ....
    • If cos(x) = 0, the roots are r1 = pi/2, r2 = 3*pi/2, r3 = 5*pi/2, ....
    • Hence r1, r2, r3, ... are roots of 1 - (x^2)/2 + (x^4)/24 - ..... = 0
    • Let x^2 = u,
        Then the equation becomes 1 - u/2 + (u^2)/24 - .... = 0
      • The roots of equation : u1 = (pi/2)^2, u2 = (3*pi/2)^2, u3 = (5*pi/2)^2
    • Equation theory
      • Equation : a*x^n + b*x^(n-1) + ..... + p*x + q = 0
      • Roots are x1, x2, x3, ....
      • Coefficient of x and roots : 1/x1 + 1/x2 + 1/x3 + ..... = p/q
    • Hence coefficient and roots u
      • 1/u1 + 1/u2 + 1/u3 + ..... = -(-1/2)/1
      • 1/((pi/2)^2) + 1/((3*pi/2)^2) + 1/((5*pi/2)^2) + .... = 1/2
      • Multiply (pi/2)^2 on both sides
      • 1 + 1/(3^2) + 1/(5^2) + ..... = ((pi/2)^2)/2 = ((pi)^2)/8

    Go to Begin

    Q04. Archimedes polygon method to find pi

    Formula based Archimedes polygon method
    • pi = C*sin(A)
    • Where C = (2^n)/2 and A = 360/(2^n)
    • Where 2^n is the number of sides of polygon
    Example 1 : n = 3
    • pi = ((2^3)/2)*sin(45) = 4*Sqr(2)/2 = 2*Sqr(2)
    Example 1 : n = 5 and use half angle formula
    • pi = ((2^5)/2)*sin(360/32)
    • = 16*Sqr((1 - cos(360/16))/2)
    • = (16/Sqr(2))*Sqr(1 - cos(360/16))
    • = (16/Sqr(2))*Sqr(1 - Sqr(1 + cos(360/8))/2))
    • = 8*Sqr(2 - Sqr(2 + Sqr(2))) = 3.121445

    Go to Begin

    Q05. Machine-like formula

    Formula
    • 1. Euler's formula : pi/4 = arctan(1/2) + arctan(1/3)
    • 2. Hermann's formula : pi/4 = 2*arctan(1/3) - arctan(1/7)
    • 3. Hutton's formula : pi/4 = 2*arctan(1/3) + arctan(1/7)

    Go to Begin

    Q06. Answer

    Go to Begin

    Q07. Answer

    Go to Begin

    Q08. Answer

    Go to Begin

    Q09. Answer

    Go to Begin

    Q10. Answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1