Mathemtics Dictionary Example



Series : Sum[n^2)] = n*(n+1)*(2*n+1)/6
Subjects

    Read Symbol defintion

  • Q01 | - Highlights
  • Q02 | - Method 1 : Prove that Sum[n^2)] = n*(n+1)*(2*n+1)/6
  • Q03 | - Method 2 : Prove that Sum[n^2)] = n*(n+1)*(2*n+1)/6
  • Q04 | - Method 3 : Prove that Sum[n^2)] = n*(n+1)*(2*n+1)/6
  • Q05 | - Method 4 : Prove that Sum[n^2)] = n*(n+1)*(2*n+1)/6
  • Q06 | - Patterns : Squres in squares
  • Q07 | - Pattern : Numbers in square patterns
  • Q08 | - Second difference of squaence 1, 4, 9, 16, 25, .....
  • Q09 | - Home work
  • Q10 | - Exercises
  • Q11 | - Exercises

Answers


Q01. Highlight
  • Pattern : Squares in squares
  • Pattern : Numbers in square patterns
  • Proof of the formula using 4 different methods

Go to Begin

Q2 Prove that 1^2 + 2^2 + 3^2 +...+ n^2 = n*(n+1)*(2*n+1)/6

* Method 1 : By observation
    1^2 + 2^2 = 1 + 4 = 5 = 2*3*5/6
    1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 = 3*4*7/6
    1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30 = 4*5*9/6

    Since 4*5*9/6 = 4*(4+1)*(2*4+1)/6 for n = 4
    Proof complete

Go to Begin

Q03. Prove that 1^2 + 2^2 + 3^2 +...+ n^2 = n*(n+1)*(2*n+1)/6
Method 2 : Use Sum[C(n+1,2)] = C(n+3,2)
    C(n+1,2) = (n+1)*n/2!
    C(n+2,3) = (n+2)*(n+1)*n/3!
    Sum[(n+1)*n/2!] = (n+2)*(n+1)/3!
    Expnand :

    Sum[n^2 + n] = 2*(n+2)*(n+1)*n/6
    Hence Sum[n^2] = 2*(n+2)*(n+1)*n/6 -Sum[n]
    Since Sum[n] = n*(n+1)/2
    Hence Sum[n^2] = n*(n+1)*[2*(n+2)/6 - 1/2]
    Hence Sum[n^2] = n*(n+1)*(2*n+1)/6

Go to Begin

Q04. Prove that 1^2 + 2^2 + 3^2 +...+ n^2 = n*(n+1)*(2*n+1)/6
Method 3 : Use mathematical induction
    n = 1 the sum is true
    n = 2 the sum is true
    n = k+1 should be true. i.e. S(k+1)=(k+1)*(k+2)*(2*(k+1)+1)/6 exists
    n = k+1 and S(k+1) = S(k) + (k+1)^2

    Hence S(k+1) = k*(k+1)*(2*k+1)/6 + (k+1)^2
    Hence S(k+1) = (k+1)*(k*(2*k+1)/6 + (k+1))
    Hence S(k+1) = ((k+1)*(2*k^2+k)/6 + k+1))
    Hence S(k+1) = (k+1)*(2*k^2 + 7*k + 6)/6
    Hence S(k+1) = (k+1)*(k+1+1)*(2*(k+1)+1)/6
    Proof complete

Go to Begin

Q05. Prove that 1^2 + 2^2 + 3^2 +...+ n^2 = n*(n+1)*(2*n+1)/6

Method 4 : Use (a+b)^3 = a^3 + 3*(a^2)*b + 3*a*(b^2) + 1 ............(1)
  • Since (x+1)^3 = x^3 + 3*x^2 + 3*x + 1
  • Sum[(x + 1)^3 - x^3] = Sum[3*x^2] + Sum[3*x] + Sum[1]
  • Sum[(x + 1)^3 - x^3]
    • = (2^3 - 1) + (3^3 - 2^3) + ...... ((x+1)^3 - x^3)
    • = (x + 1)^3 - 1 (All terms cancelled out expcept -1 and (x+1)^3)
    • = x^3 + 3*x^2 + 3*x
  • Hence Sum[3*x^2] + Sum[3*x] + Sum[1] = x^3 + 3*x^2 + 3*x ...... (2)
  • From (1) and (2) we have
  • Sum[3*x^2] + Sum[3*x] + Sum[1] = x^3 + 3*x^2 + 3*x
  • Sum[3*x^2] = x^3 + 3*x^2 + 3*x - Sum[3*x] - Sum[1]
  • Sum[3*n^2] = n^3 + 3*n^2 + 3*n - 3*n*(n+1)/2 - n
    • = n^3 + 3*n^2 + 3*n - 3*n*(n+1)/2 - n
    • = n^3 + 2*n + 3*n^2 - 3*n^2/2 - 3*n/2
    • = n^3 + 3*n^2/2 + n/2
    • = n*(2*n^2 + 3*n + 1)/2
    • = n*(n+1)*(2*n+1)/2
  • Hence Sum[n^2] = n*(n+1)*(2*n+1)/6

Go to Begin

Q06. Pattern :

Squares in squares 1 + 4 + 9 + 16 + ....

Go to Begin

Q07. Pattern : Numbers in square patterns

* .......... 1^2 = 1

* *
* * ........ 2^2 = 4

* * *
* * *
* * * ...... 3^2 = 9

Go to Begin

Q08. Find 2nd difference of sequence 1, 4, 9, 16, 25, 36,....
    Sequence : 01 04 09 16 25 36 .....
    1st diff : .. 03 05 07 09 11 .....
    2nd diff : ..... 02 02 02 02 .....

Go to Begin

Q09. Home work :
    a. Write all formulae used in above methods to note book.
    b. Try to remember them
    c. Fid more series which are given in Chapter 14 of MD2002

Go to Begin

Q10. Exercises :
    a. Prove Sum[n^1] = (n*(n+1))/2 ........... See program 14 01
    b. Prove Sum[n^2] = (n*(n+1)*(2*n+1)/6 .... See Program 14 12
    c. Sequence 1, 4, 09, 16, 25, ...... Find the 10th term
    c. Sequence 2, 5, 10, 17, 26, ...... Find the 10th term

Go to Begin

Q11. Reference
  • MD2002 Program 14 13
  • MD2002 text file ZS.txt

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

1