Mathematics Dictionary
Dr. K. G. Shih
Sum[n^4] = ?
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Method 1 : S(n) = 1^4 + 2^4 + 3^4 + ... + n^4
Q02 |
- Method 2 : S(n) = 1^4 + 2^4 + 3^4 + ... + n^4
Q03 |
- Method 3 : S(n) = 1^4 + 2^4 + 3^4 + ... + n^4
Q04 |
- Method 4 : S(n) = 1^4 + 2^4 + 3^4 + ... + n^4
Q05 |
- Reference
Q01. S(n) = 1^4 + 2^4 + 3^4 + ... + n^4
Method 1 : By observation
1^4 + 2^4 = 1 + 16 = 17
1^4 + 2^4 + 3^4 = 1 + 16 + 81 = 98
1^4 + 2^4 + 3^4 + 4^4 = 98 + 256 = 354
It is not easy to make conclusion
Go to Begin
Q02. S(n) = 1^4 + 2^4 + 3^4 +...+ n^4
Method 2 : Use Sum[C(n+3,4)] = C(n+4,5)
Sum[C(n+3),4] = Sum[n*(n+1)*(n+2)*(n+3)/4!]
Since n*(n+1)*(n+2)*(n+3) = n^4 + 6*n^3 + 11*n^2 + 6*n
Sum[C(n+3),4] = (Sum[n^4] + 6*Sum[n^3] + 11*Sum[n^2] + 6*Sum[n])/24 ...... (1)
C(n+4,5) = n*(n+1)*(n+2)*(n+3)*(n+4)/(5!)
Since n*(n+1)*(n+2)*(n+3)*(n+4) = n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n .. (2)
Sum[C(n+3),4]
= C(n+4,5)
= n*(n+1)*(n+2)*(n+3)*(n+4)/(5!)
= (Sum[n^4] + 6*Sum[n^3] + 11*Sum[n^2] + 6*Sum[n])/24 ................ (3)
Sum[n^4] = 24*n*(n+1)*(n+2)*(n+3)*(n+4)/120
- 6*Sum[n^3] - 11*sum[n^2] - 6*Sum[n]
From (2) and (3)
Sum[n^4]
= (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)/5
- 6*Sum[n^3] - 11*sum[n^2] - 6*Sum[n]
We know that
Sum[1] = n.
Sum[n] = n*(n+1)/2.
Sum[n^2] = n*(n+1)*(2*n+1)/6.
Sum[n^3] = (n*(n+1)/2)^2
Sum[n^4]
= (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)/5
- 6*(n*(n+1)/2)^2 - 11*n*(n+1)*(2*n+1)/6 - 6*n*(n+1)/2
= (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)/5
- 6*(n^4 +2*n^3 + n^2)/4 - 11*(2*n^3 + 3*n^2 + n)/6 - 3*(n^2 + n)
= (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)/5
- (6*n^4 + 12*n^3 + 6*n^2)/4 - (22*n^3 + 33*n^2 + 11*n)/6 - 3*(n^2 + n)
= 24*(n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)/120
- 30*(6*n^4 + 12*n^3 + 6*n^2)/120 - 20*(22*n^3 + 33*n^2 + 11*n)/120
- 360*(n^2 + n)/120
= (24*n^5)/120 + (24*10 - 30*6)*(n^4)/120
+ (24*35 - 30*12 - 20*22)*(n^3)/120 + (24*50 - 30*6 - 20*33 - 360)*(n^2)/120
+ (24*24 - 220 - 360)*n/120
= (24*n^5 + 60*n^4 + 40*n^3 + - 4*n)/120
= n*(6*n^4 + 15*n^3 + 10*n^2 - 1)/30
Go to Begin
Q03 S(n) = 1^4 + 2^4 + 3^4 +...+ n^4 = n*(6*n^4 + 15*n^3 + 10*n^2 - 1)/30
Method 3 : Use mathematical induction
n = 1
S(1) = 1^4 = 1
S(1) = n*(6*n^4 + 15*n^3 + 10*n^2 - 1)/30 = 1
It is is true
n = 2
S(1) = 1^4 + 2^4 = 1 + 16 = 17
S(1) = 2*(6*2^4 + 15*2^3 + 10*2^2 - 1)/30 = 1
S(1) = 2*(96 + 120 + 40 - 1)/30 = 2*255/30 = 17
It is is true
n = k+1 should be true
n = k+1
LHS = S(k) + (k + 1)^4
RHS = 6*k^5 + 15*k^4 + 10 k^3 - k)/30 + (k + 1)^4
= ....
Proof complete
Go to Begin
Q04 S(n) = 1^4 + 2^4 + 3^4 +...+ n^4
Method 4 : Use (a+1)^5 = a^5 + 5*(a^4) + 10*(a^3) + 10*a^2 + 5*a + 1
(x + 1)^5 = x^5 + 5*(x^4) + 10*(x^3) + 10*(x^2) + 5*x + 1
Sum[(x + 1)^5 - x^5] = Sum[5*(x^4) + 10*(x^3) + 10*(x^2) + 5*x + 1] .... (1)
Sum[(x + 1)^5 - x^5] =
= (2^5 - 1) + (3^5 - 2^5) + .... + ((x+1)^5 - x^5)
= (x + 1)^5 - 1
= x^5 + 5*x^4 + 10*x^3 + 10*x^2 + 5*x ............................... (2)
Note : since all terms cancelled out except -1 and (x + 1)^5
From (1) and (2), we have
Go to Begin
Q05 Reference
Series
1^4 + 2^4 + 3^4 + 5^4 + ....
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.