Mathematics Dictionary
Dr. K. G. Shih
Sequences : Triangular Patterns
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Numbers in triangular patterns
Q02 |
- Difference of sequence of 1, 3, 6, 10, 15, ....
Q03 |
- Find S(n) = 1 + 3 + 6 + 10 + 15 + .....
Q04 |
- Number pattern : Top row numbers ib triangular sequence
Q05 |
- Triangles in triangles
Q01. Numbers in square pattern
Sequence : 1, 3, 6, 10, ..... find nth term
* .................. 1
*
* * ................ 3 = T(1) + 2
*
* *
* * * .............. 6 = T(2) + 3
*
* *
* * *
* * * * ............ 10 = T(3) + 4
Go to Begin
Q02. Squences : 1, 3, 6, 10, 15, 21, ....
Difference
* 1st difference F(k) = T(k + 1) - T(K) : 2 3 4 5 6 .......
* 2nd difference G(k) = F(k + 1) - F(k) : 1 1 1 1 1 .......
Formula
* nth term : T(n) = n*(n+1)
* Sum of n terms : S(n) = n*(n + 1)*(n + 1)/6
* This is same as quadratic function y = (x^2)/2 + x/2
* 2nd derivative y" = 1 and it is the same as 2nd difference
Go to Begin
Q03 Find S(n) = 1 + 3 + 6 + 10 + ..... + n*(n+1)/2
Prove that S(n) = n*(n + 1)*(n + 2)/6
Sum[n] = n*(n + 1)/2
Sum[n^2]
= n*(n + 1)*(2*n + 1)/6
Sum[n*(n + 1)/2]
= Sum[(n^2)/2] + Sum[n/2]
= n*(n + 1)*(2*n + 1)/12 + n*(n + 1)/4
= n*(n + 1)*((2*n + 1)/12 + 1/4)
= n*(n + 1)*(n + 2)/6
Go to Begin
Q04 Number pattern : Top row numbers ib triangular sequence
Number pattern (1)
Top row
Numbers in triangular sequence
Example
1. Find row number and column number for 100
2. What is the number at column 6 and row 6 ?
Go to Begin
Q05. Triangles in triangles Pattern
Pattern
Triangles in triangles
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.