Mathematics Dictionary
Dr. K. G. Shih
Sequences : Square Patterns
Symbol Defintion
Example : Sqr(x) = square root of x
Q01 |
- Numbers in square patterns
Q02 |
- Difference of sequence of 1, 4, 9, 16, 25, ....
Q03 |
- Find S(n) = 1 + 4 + 9 + 16 + ..... + n^2
Q04 |
- Squares in squares
Q01. Numbers in square pattern
Sequence : 1, 3, 6, 10, ..... find nth term
* .................. 1^2
* *
* * ................ 2^2
* * *
* * *
* * * .............. 3^2
* * * *
* * * *
* * * *
* * * * ............ 4^2
Hence : T(n) = n^2
Hence : S(n) = n*(n + 1)*(2*n + 1)/6
Go to Begin
Q02. Squences : 1, 4, 9, 16, 25, 36, ....
Difference
* 1st difference F(k) = T(k + 1) - T(K) : 3 5 7 9 11 ......
* 2nd difference G(k) = F(k + 1) - F(k) : 2 2 2 2 2 .......
Formula
* nth term : T(n) = n^2
* Sum of n terms : S(n) = n*(n + 1)*(2*n + 2)/6
* This is same as quadratic function y = x^2
* 2nd derivative y" = 2 and it is the same as 2nd difference
Go to Begin
Q03 Find S(n) = 1 + 4 + 9 + 16 + ..... + n^2
Prove that S(n) = n*(n + 1)*(2*n + 1)/6
Sum[n^2]
= n*(n + 1)*(2*n + 1)/6
Go to Begin
Q04 Squares in squares patterns
Squres in squares patterns
Squares in squares
Patterns
Examples
1. Sketch pattern for 4^2
2. Sketch pattern for 5^2
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.