Counter
Mathematics Dictionary
Dr. K. G. Shih

Sine Law


  • Q01 | - Diagram : Proof of sine law
  • Q02 | - Sine Law
  • Q03 | - Area of triangle = a*b*c/(4*R)
  • Q04 | - Area of triangle = 2*(R^2)*sin(A)*sin(B)*sin(C)
  • Q05 | - Application

  • Q01. Diagram : Proof of sine law



    Go to Begin

    Q02. Sine Law

    Outlines : Sine law.
    • Triangle ABC
      • Angles A,B and C .
      • sides a = BC, b = CA and c = AB.
    • Defintion of sine law
      • Triangle ABC : a/sin(A) = b/sin(B) = c/sin(C) = 2*R.
      • Where R is theradius of circum-circle.
    • Application : Solve triangle to find another angles and sides
      • SAA : Solve triangle if a, A, B are given.
      • SSA : Solve triangle if a, b, A are given.
    Method 1 : Use right triangle inscribed a circle
    • Construction
      • Draw a circle of radius R.
      • Draw triangle inscribed in the circle.
      • Draw diameter AD and formed triangle ADB.
    • Proof
      • Angle ABD = 90 degrees.
      • Hence sin(ADB) = AB/AD = c/(2*R)
      • Angle ADB = angle ACB = C.
      • Hence sin(C) = c/(2*R)
      • Hence c/Sin(C) = 2*R.
      • Similarly, a/sin(A) = 2*R and b/sin(B) = 2*R
    Method 2 : Use use triangle area = b*c*sin(A)/2
    • Triangle Area = b*c*sin(A) = c*a*sin(B) = a*b*sin(C).
    • Divide by abc.
    • Hence sin(A)/a = sin(B)/c = sin(C)/c.

    Go to Begin

    Q03. Area of triangle = a*b*c/4

    Hint : It requires
    • 1. Sine law : a = 2*R*sin(A), b = 2*R*sin(B) and c = 2*R*sin(C)
    • 2. Area of triangle = a*b*sin(C)/2
    Proof
    • Area of triangle = a*b*sin(C)/2
    • sin(C) = c/(2*R)
    • Hence area of triangle = a*b*c/(4*R)
    • Where R is radius of circum-circle

    Go to Begin

    Q04. Area of triangle = 2*(R^2)*sin(A)*sin(B)*sin(C)

    Hint : It requires
    • 1. Sine law : a = 2*R*sin(A), b = 2*R*sin(B) and c = 2*R*sin(C)
    • 2. Area of triangle = a*b*sin(C)/2
    Proof
    • Area of triangle = a*b*sin(C)/2
    • a = 2*R*sin(A)
    • b = 2*R*sin(B)
    • Hence Area of triangle = 2*(R^2)*sin(A)*sin(B)*sin(C)

    Go to Begin

    Q05. Solve triangle if SSA or SAA are given

    Given that A = 30, a = 4 and b = 6. Find B, C and c.
    • Using sine law
    • Sin(A)/a = sin(B)/b
    • Hence sin(B) = b*sin(A)/a = 6 *sin(30)/4 = 1.5*(1/2) = 0.75.
    • Hence B = 48.59 degrees.
    • C = 180 - A - B = 101.41.
    • Sin(A)/a = sin(C)/c
    • c = a*sin(C)/sin(A) = 4*sin(101.41)/sin(30) = 4*(0.980237)/(1/2) = 7.8419.
    Verify
    • sin(A)/a = sin(30)/4 = 1/8 = 0.125.
    • sin(C)/c = sin(101.41)/7.6419 = 0.12499

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1