Counter
Mathematics Dictionary
Dr. K. G. Shih

Sequences


  • Q01 | - Sequences : 1, 3, 7, 13, ....Proof of sine law
  • Q02 | - Sequences : 1, 4, 10, 20, .....
  • Q03 | - Sequences
  • Q04 | - Sequences
  • Q05 | - Sequences

  • Q01. Seqences : 1, 3, 7, 13, 21, ....

    Questions
    • 1. Find 1st and 2nd difference
    • 2. Find y = F(x)
    • 3. Find T(n)
    • 4. Find S(n)
    Solution : Find difference
    • n = .......1, 2, 3, 04, 05, ...
    • Squences : 1, 3, 7, 13, 21, ...
    • 1st diff : .. 2, 4, 06, 08, ...
    • 2nd diff : ..... 2, 02, 02, ...
    • Hence expression is y = a*x^2 + b*x + c and a = 1
    Find y = a*x^2 + b*x + c
    • Since 2nd diff has common difference 2, hence a = 1
    • If x = 1, y = 1 Hence 1 = 1^2 + b*1 + c
    • Hence b + c = 0 ................................. (1)
    • If x = 2, y = 3 hence 3 = 2^2 + b*2 + c
    • Hence 2*b + c = -1 .............................. (2)
    • Solve (1) and (2), we have
    • b = -1 and c = 1
    • Hence y = x^2 - x + 1
    Find T(n) and S(n)
    • T(n) = n^2 - n + 1
    • S(n) = Sum[n^2 - n + 1]
    • = Sum[n^2] - Sum[n] + Sum[1]
    • = n*(n+1)*(2*n+1)/6 - n*(n+1)/2 + n
    • = n*((n+1)*(2*n+1)/6 - (n+1)/2 + 1)
    • = n*(2*n^2 +3*n + 1)/6 - (3*n + 3)/6 + 6/6)
    • = n*(2*n^2 + 4)/6
    • = n*(n^2 + 2)/3
    Verify S(n)
    • S(4) = 4*(4^2 + 2)/3 = 4*18/3 = 24
    • S(4) = 1 + 3 + 7 + 23 = 24

    Go to Begin

    Q02. Sequences : 1, 4, 10, 20, .....

    Questions
    • 1. Find difference
    • 2. Find y = F(x)
    • 3. Find T(n)
    • 4. Find S(n)
    Solution : Find difference
    • n = .......1, 2, 03, 04, 05, 06, ...
    • Squences : 1, 4, 10, 20, 35, 50, ...
    • 1st diff : .. 3, 06, 10, 15, 21, ...
    • 2nd diff : ..... 03, 04, 05, 06, ...
    • 3rd diff : ......... 01, 01, 01, ...
    • Hence expression is y = a*x^3 + b*x^2 + c*x + d and a = 1/6
    Find y = a*x^3 + b*x^2 + c*x + d
    • Since 3nd diff has common difference 1, hence a = 1/6
    • If x = 1, y = 1 Hence 1 = (1^3)/6 + b*1^2 + c*1 + d
    • Hence b + c + d = 5/6 ................................. (1)
    • If x = 2, y = 4 hence 4 = (2^3)/6 + b*2^2 + c*2 + d
    • Hence 4*b + 2*c + d = 8/3 ............................. (2)
    • If x = 3, y = 10 Hence 10 = (3^3)/6 + b*3^2 + c*3 + d
    • Hence 9*b + 3*c + d = 11/2 ............................ (3)
    • (2) - (1), we have
    • 3*b + c = 11/6 ........................................ (4)
    • (3) - (2), we have
    • 5*b + c = 17/6 ........................................ (5)
    • (5) - (4), we have
    • 2*b = 1 and b = 1/2
    • Substitute b into (4), we have
    • 3*(1/2) + c = 11/6. c = 1/3
    • Substitute b = 1/2 and c = 1/3 into (1), we have
    • 1/2 + 1/3 + d = 5/6 and d = 0
    • Hence y = (x^3)/6 + (x^2)/2 + x/3 = (x^3 + 3*x^2 + 2*x)/6
    Find T(n) and S(n)
    • T(n) = (n^3 + 3*n^2 + 2*n)/6 = n*(n+1)*(n+2)/6
    • S(n) = Sum[n*(n+1)*(n+2)/6] = n*(n+1)*(n+2)*(n+3)/24
    Verify S(n)
    • S(3) = 3*4*5*6/24 = 15
    • S(3) = 1 + 4 + 10 = 15
    Proof of S(n)

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1 1