Q04. Verify (pi)^2 = 9*(Sum[1/(2*n-1)*2] - Sum[1/(6*n-3)^2)])
This series is based on csc(z)^2 = Sum[1/[(z - k*pi)^2] when z = pi/6
k = 0, (pi/6 - 0*pi)^2 = ( 1*pi/6)^2
k = 1, (pi/6 - 1*pi)^2 = ( 5*pi/6)^2
k = 2, (pi/6 - 2*pi)^2 = (11*pi/6)^2
k = 3, (pi/6 - 3*pi)^2 = (17*pi/6)^2
k = 4, (pi/6 - 4*pi)^2 = (23*pi/6)^2
k = 5,
.....
k = -1, (pi/6 + 1*pi)^2 = ( 7*pi/6)^2
k = -2, (pi/6 + 2*pi)^2 = (13*pi/6)^2
k = -3, (pi/6 + 3*pi)^2 = (19*pi/6)^2
k = -4, (pi/6 + 1*pi)^2 = (25*pi/6)^2
k = -5,
......
Since csc(pi/6) = 2
Hence 2 = 1/( 1*pi/6)^2 + 1/( 5*pi/6)^2 + 1/( 7*pi/6)^2 + 1/(11*pi/6)^2
+ 1/(13*pi/6)^2 + 1/(17*pi/6)^2 + 1/(19*pi/6)^2 + 1/(23*pi/6)^2
+ .....
The series including 1, 5, 7, 11, 13, 17, 19, 23, 25, .....
The sequence missing 5, 9, 15, 21, ....
Missing terms = 1/(3*pi/6)^2 + 1/(9*pi/6)^2 + 1/(15*pi/6)^2, ...
= Sum[1/((3 + (n - 1)*6)*pi/6)^2]
Hence (2)^2 = (36/(pi)^2)*(Sum[1/(2*n-1)^2] - Sum[1/(6*n -3)^2])
= (36/(pi)^2)*(Sum[1/(2*n-1)^2] - Sum[1/(6*n-3)^2])
Hence (pi)^2 = 9*(Sum[1/(2*n-1)^2] - Sum[1/(6*n-3)^2])
Series of Pi
(pi)^2 = 9*(1 + 1/(5)^2 + 1/(7)^2 + 1/(11)^2 + 1/(13)^2 + 1/(17)^2 + 1/(19)^2
+ 1/(23)^2 + 1/(25)^2 + ......
Verification
(pi)^2 = 9*(Sum[1/(2*n - 1)^2)] - Sum[1/(6*n - 3)^2]
when n = 40000, pi = Sqr(9*Sum[1/(2*n - 1)^2) - 1/(6*n - 3)^2])
= 3.14159257401265
This calculation is given in option 5b of NC.exe
Since pi = 4*Atn(1)
= 3.14159265358979
Hence this series is true, but it is convergent very slow.
The example shows that the result is accurate to 6 decimal for 40000 terms used.