Mathematics Dictionary
Dr. K. G. Shih
Values of functions
Subjects
Symbol Defintion
Example : GE = Greater and Equal
TR 03 00 |
- Outlines
TR 03 01 |
- Values of angle 0 degrees
TR 03 02 |
- Special value for angle is 30 degrees
TR 03 03 |
- Special value for angle is 45 degrees
TR 03 04 |
- Special value for angle is 60 degrees
TR 03 05 |
- Special value for angle 90 degrees
TR 03 06 |
- Summary of values for 0, 30, 45, 60, 90 degrees
TR 03 07 |
- Use special angle to prove sin(A+B) = sin(A)*cos(A) + cos(A)*sin(B)
TR 03 08 |
- Use special angle to prove sin(A-B) = sin(A)*cos(A) - cos(A)*sin(B)
TR 03 09 |
- Use special angle to prove sin(2*A) = 2*sin(A)*cos(A)
TR 03 10 |
- Exercises
Answers
TR 03 01. Special angles 0 degrees
Values of 0 degrees of functions
1. sin(0) = 0
Since sin(A) = Opp/Hyp.
If angle A tends to zero, Opp also tends to zero.
Hence sin(0) = 0.
2. cos(0) = 1
Since cos(A) = Adj/Hyp.
If angle A tends to zero, Adj also tends to Hyp.
Hence cos(0) = 1.
3. tan(0) = infinite
Since tan(A) = Opp/Adj.
If angle A tends to zero, Opp also tends to zero.
Hence tan(0) = 0.
4. csc(0) = infinite
Since csc(A) = 1/sin(A).
Hence csc(0) = 1/0 = infinite.
5. sec(0) = 1
Since sec(A) = 1/cos(A).
Hence sec(0) = 1/1 = 1.
6. cot(0) = infinite
Since cot(A) = 1/tan(A).
Hence tan(0) = 1/0 = infinite.
Go to Begin
TR 03 02. Special value for angle is 30 degrees
Let angle A = 30 and angle C = 90
Geometric theory
If Opposite side of angle A is 1, then Hypothese is 2 (Geometric theory).
Hence Adjacent of angle A is Sqr(2^2 - 1) = Sqr(3)
The values of the ratios are
sin(30) = Opp/Hyp = 1/2.
cos(30) = Adj/Hyp = Sqr(3)/2.
Tan(30) = Opp/Adj = 1/Sqr(3) = Sqr(3)/3.
csc(30) = Hyp/Opp = 2.
sec(30) = Hyp/Adj = 2/Sqr(3) = 2*Sqr(3)/3.
cot(30) = Adj/Opp = Sqr(3).
Go to Begin
TR 03 03. Special value for angle is 45 degrees
Let angle A = 45 and angle C = 90
Geometric theory
If Opposite side of angle A is 1 and adjacent side is also 1.
Hence hypothese Sqr(1^2 + 1^2) = Sqr(2)
The values of the ratios are
sin(45) = Opp/Hyp = Sqr(2)/2.
cos(45) = Adj/Hyp = Sqr(2)/2.
Tan(45) = Opp/Adj = 1.
csc(45) = Hyp/Opp = 2/Sqr(2) = Sqr(2).
sec(45) = Hyp/Adj = 2/Sqr(2) = Sqr(2).
cot(45) = Adj/Opp = 1.
Go to Begin
TR 03 04. Special value for angle is 60 degrees
Let angle A = 60 and angle C = 90
Geometric theory
If hypothese is 2, then adjacent side of A is 1.
Hence Oppsite side of angle A is Sqr(2^2 - 1) = Sqr(3)
The values of the ratios are
sin(60) = Opp/Hyp = Sqr(3)/2.
cos(60) = Adj/Hyp = 1/2.
Tan(60) = Opp/Adj = 1/Sqr(3) = Sqr(3)/3.
csc(60) = Hyp/Opp = 2/Sqr(3) = 2*Sqr(3)/3..
sec(60) = Hyp/Adj = 2.
cot(60) = Adj/Opp = 1/Sqr(3) = Sqr(3)/3.
Go to Begin
TR 03 05. Values for angle 90 degrees
Values of 90 degrees of function
1. sin(90) = 0
Since sin(A) = Opp/Hyp.
If angle A tends to 90 degrees, Opp also tends to Hyp.
Hence sin(90) = 1.
2. cos(90) = 1
Since cos(A) = Adj/Hyp.
If angle A tends to 90, Adj also tends to 0.
Hence cos(90) = 0.
3. tan(90) = infinite
Since tan(A) = Opp/Adj.
If angle A tends to 90 degrees, Adj also tends to zero.
Hence tan(90) = infinite.
4. csc(90) = infinite
Since csc(A) = 1/sin(A).
Hence csc(90) = 1.
5. sec(90) = 1
Since sec(A) = 1/cos(A).
Hence sec(90) = 1/0 = infinite.
6. cot(90) = 0
Since cot(A) = 1/tan(A).
Hence tan(90) = 1/infinite = 0.
Go to Begin
TR 03 06. Summary of values for 0, 30, 45, 60, 90 degrees
Angle A =
0
30
45
60
90
sin(A) =
0
1/2
Sqr(2)/2
Sqr(3)/2
1
cos(A) =
1
Sqr(3)/2
Sqr(2)/2
1/2
0
tan(A) =
0
Sqr(3)/3
1
Sqr(3)
+∞
csc(A) =
+∞
2
Sqr(2)
2*Sqr(3)/3
0
sec(A) =
1
2*Sqr(3)/3
Sqr(2)
2
+∞
cot(A) =
+∞
Sqr(3)
1
Sqr(3)/3
0
Go to Begin
TR 03 07. Use special angle to prove that sin(A + B) = sin(A)*cos(A) + cos(A)*sin(B)
Use 30 and 60 degrees
sin(30)*cos(60) + cos(30)*sin(60) = +sin(90)
LHS = (1/2)*(1/2) + (Sqr(3)/2)*(Sqr(3)/2) = 1/4 + 3/4 = 1.
RSH = sin(90) = 1.
Use 45 and 45 degrees
sin(45)*cos(45) + cos(45)*sin(45) = +sin(90)
LHS = (Sqr(2)/2)*(Sqr(2)/2) + (Sqr(2)/2)*(Sqr(2)/2) = 1/2 + 1/2 = 1
RSH = sin(90) = 1.
Go to Begin
TR 03 08. Use special angle to prove that sin(A - B) = sin(A)*cos(A) -cos(A)*sin(B)
Use 30 and 60 degrees
sin(30)*cos(60) - cos(30)*sin(60) = -sin(30)
LHS = (1/2)*(1/2) - (Sqr(3)/2)*(Sqr(3)/2) = 1/4 - 3/4 = -1/2.
RSH = -sin(30) = -1/2.
Ese 45 and 45 degrees
sin(60)*cos(30) - cos(60)*sin(30) = +sin(30)
LHS = (Sqr(3)/2)*(Sqr(3)/2) + (1/2)*(1/2) = 3/2 - 1/2 = 1/2
RSH = sin(30) = 1/2.
Go to Begin
TR 03 09. Use special angles prove that sin(2*A) = 2*sin(A)*cos(A)
Let A = 30 degrees
LHS = sin(2*A) = sin(60) = Sqr(3)/2.
RHS = 2*sin(A)*cos(A) = 2*(1/2)*(Sqr(3)/2) = Sqr(3)/2.
Let A = 45 degrees
LHS = sin(2*A) = sin(90) = 1.
RHS = 2*sin(A)*cos(A) = 2*(Sqr(2)/2)*(Sqr(2)/2) = 1.
Go to Begin
TR 03 10. Exercises : Use special angles 30 and 60 to prove that
Questions
1. cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B).
2. cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B).
3. tan(A+B) = (tan(A) + tan(B))/(1 - tan(A)*tan(B).
4. tan(A-B) = (tan(A) - tan(B))/(1 + tan(A)*tan(B).
Go to Begin
TR 03 00. Outlines
Values of 0 degrees
sin(0) = 0, cos(0) = 1 and tan(0) = 0
Values of 30 degrees
sin(30) = 0.5, cos(30) = Sqr(3)/2 and tan(0) = Sqr(3)/3
Values of 45 degrees
sin(45) = Sqr(2)/2, cos(45) = Sqr(2)/2 and tan(45) = 1
Values of 90 degrees
sin(90) = 1, cos(90) = 0 and tan(90) = infinite
tang(89.999999) = +infinite
tang(90.000001) = +infinite
From diagrams compare the answer
Diagrams
Program 02 01, 02 02, ....
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.