Counter
Mathematics Dictionary
Dr. K. G. Shih

Values of functions
Subjects


  • TR 03 00 | - Outlines
  • TR 03 01 | - Values of angle 0 degrees
  • TR 03 02 | - Special value for angle is 30 degrees
  • TR 03 03 | - Special value for angle is 45 degrees
  • TR 03 04 | - Special value for angle is 60 degrees
  • TR 03 05 | - Special value for angle 90 degrees
  • TR 03 06 | - Summary of values for 0, 30, 45, 60, 90 degrees
  • TR 03 07 | - Use special angle to prove sin(A+B) = sin(A)*cos(A) + cos(A)*sin(B)
  • TR 03 08 | - Use special angle to prove sin(A-B) = sin(A)*cos(A) - cos(A)*sin(B)
  • TR 03 09 | - Use special angle to prove sin(2*A) = 2*sin(A)*cos(A)
  • TR 03 10 | - Exercises

  • Answers


    TR 03 01. Special angles 0 degrees

    Values of 0 degrees of functions
    • 1. sin(0) = 0
      • Since sin(A) = Opp/Hyp.
      • If angle A tends to zero, Opp also tends to zero.
      • Hence sin(0) = 0.
    • 2. cos(0) = 1
      • Since cos(A) = Adj/Hyp.
      • If angle A tends to zero, Adj also tends to Hyp.
      • Hence cos(0) = 1.
    • 3. tan(0) = infinite
      • Since tan(A) = Opp/Adj.
      • If angle A tends to zero, Opp also tends to zero.
      • Hence tan(0) = 0.
    • 4. csc(0) = infinite
      • Since csc(A) = 1/sin(A).
      • Hence csc(0) = 1/0 = infinite.
    • 5. sec(0) = 1
      • Since sec(A) = 1/cos(A).
      • Hence sec(0) = 1/1 = 1.
    • 6. cot(0) = infinite
      • Since cot(A) = 1/tan(A).
      • Hence tan(0) = 1/0 = infinite.

    Go to Begin

    TR 03 02. Special value for angle is 30 degrees

    Let angle A = 30 and angle C = 90
    • Geometric theory
      • If Opposite side of angle A is 1, then Hypothese is 2 (Geometric theory).
      • Hence Adjacent of angle A is Sqr(2^2 - 1) = Sqr(3)
    • The values of the ratios are
      • sin(30) = Opp/Hyp = 1/2.
      • cos(30) = Adj/Hyp = Sqr(3)/2.
      • Tan(30) = Opp/Adj = 1/Sqr(3) = Sqr(3)/3.
      • csc(30) = Hyp/Opp = 2.
      • sec(30) = Hyp/Adj = 2/Sqr(3) = 2*Sqr(3)/3.
      • cot(30) = Adj/Opp = Sqr(3).
    Go to Begin

    TR 03 03. Special value for angle is 45 degrees

    Let angle A = 45 and angle C = 90
    • Geometric theory
      • If Opposite side of angle A is 1 and adjacent side is also 1.
      • Hence hypothese Sqr(1^2 + 1^2) = Sqr(2)
    • The values of the ratios are
      • sin(45) = Opp/Hyp = Sqr(2)/2.
      • cos(45) = Adj/Hyp = Sqr(2)/2.
      • Tan(45) = Opp/Adj = 1.
      • csc(45) = Hyp/Opp = 2/Sqr(2) = Sqr(2).
      • sec(45) = Hyp/Adj = 2/Sqr(2) = Sqr(2).
      • cot(45) = Adj/Opp = 1.
    Go to Begin

    TR 03 04. Special value for angle is 60 degrees

    Let angle A = 60 and angle C = 90
    • Geometric theory
      • If hypothese is 2, then adjacent side of A is 1.
      • Hence Oppsite side of angle A is Sqr(2^2 - 1) = Sqr(3)
    • The values of the ratios are
      • sin(60) = Opp/Hyp = Sqr(3)/2.
      • cos(60) = Adj/Hyp = 1/2.
      • Tan(60) = Opp/Adj = 1/Sqr(3) = Sqr(3)/3.
      • csc(60) = Hyp/Opp = 2/Sqr(3) = 2*Sqr(3)/3..
      • sec(60) = Hyp/Adj = 2.
      • cot(60) = Adj/Opp = 1/Sqr(3) = Sqr(3)/3.

    Go to Begin

    TR 03 05. Values for angle 90 degrees

    Values of 90 degrees of function
    • 1. sin(90) = 0
      • Since sin(A) = Opp/Hyp.
      • If angle A tends to 90 degrees, Opp also tends to Hyp.
      • Hence sin(90) = 1.
    • 2. cos(90) = 1
      • Since cos(A) = Adj/Hyp.
      • If angle A tends to 90, Adj also tends to 0.
      • Hence cos(90) = 0.
    • 3. tan(90) = infinite
      • Since tan(A) = Opp/Adj.
      • If angle A tends to 90 degrees, Adj also tends to zero.
      • Hence tan(90) = infinite.
    • 4. csc(90) = infinite
      • Since csc(A) = 1/sin(A).
      • Hence csc(90) = 1.
    • 5. sec(90) = 1
      • Since sec(A) = 1/cos(A).
      • Hence sec(90) = 1/0 = infinite.
    • 6. cot(90) = 0
      • Since cot(A) = 1/tan(A).
      • Hence tan(90) = 1/infinite = 0.

    Go to Begin

    TR 03 06. Summary of values for 0, 30, 45, 60, 90 degrees

    Angle A = 0 30 45 60 90
    sin(A) = 0 1/2 Sqr(2)/2 Sqr(3)/2 1
    cos(A) = 1 Sqr(3)/2 Sqr(2)/2 1/2 0
    tan(A) = 0 Sqr(3)/3 1 Sqr(3) +∞
    csc(A) = +∞ 2 Sqr(2) 2*Sqr(3)/3 0
    sec(A) = 1 2*Sqr(3)/3 Sqr(2) 2 +∞
    cot(A) = +∞ Sqr(3) 1 Sqr(3)/3 0

    Go to Begin

    TR 03 07. Use special angle to prove that sin(A + B) = sin(A)*cos(A) + cos(A)*sin(B)

    Use 30 and 60 degrees
    • sin(30)*cos(60) + cos(30)*sin(60) = +sin(90)
      • LHS = (1/2)*(1/2) + (Sqr(3)/2)*(Sqr(3)/2) = 1/4 + 3/4 = 1.
      • RSH = sin(90) = 1.
    Use 45 and 45 degrees
    • sin(45)*cos(45) + cos(45)*sin(45) = +sin(90)
      • LHS = (Sqr(2)/2)*(Sqr(2)/2) + (Sqr(2)/2)*(Sqr(2)/2) = 1/2 + 1/2 = 1
      • RSH = sin(90) = 1.

    Go to Begin

    TR 03 08. Use special angle to prove that sin(A - B) = sin(A)*cos(A) -cos(A)*sin(B)

    Use 30 and 60 degrees
    • sin(30)*cos(60) - cos(30)*sin(60) = -sin(30)
      • LHS = (1/2)*(1/2) - (Sqr(3)/2)*(Sqr(3)/2) = 1/4 - 3/4 = -1/2.
      • RSH = -sin(30) = -1/2.
    Ese 45 and 45 degrees
    • sin(60)*cos(30) - cos(60)*sin(30) = +sin(30)
      • LHS = (Sqr(3)/2)*(Sqr(3)/2) + (1/2)*(1/2) = 3/2 - 1/2 = 1/2
      • RSH = sin(30) = 1/2.

    Go to Begin

    TR 03 09. Use special angles prove that sin(2*A) = 2*sin(A)*cos(A)

    Let A = 30 degrees
    • LHS = sin(2*A) = sin(60) = Sqr(3)/2.
    • RHS = 2*sin(A)*cos(A) = 2*(1/2)*(Sqr(3)/2) = Sqr(3)/2.
    Let A = 45 degrees
    • LHS = sin(2*A) = sin(90) = 1.
    • RHS = 2*sin(A)*cos(A) = 2*(Sqr(2)/2)*(Sqr(2)/2) = 1.

    Go to Begin

    TR 03 10. Exercises : Use special angles 30 and 60 to prove that

    Questions
    • 1. cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B).
    • 2. cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B).
    • 3. tan(A+B) = (tan(A) + tan(B))/(1 - tan(A)*tan(B).
    • 4. tan(A-B) = (tan(A) - tan(B))/(1 + tan(A)*tan(B).

    Go to Begin

    TR 03 00. Outlines

    Values of 0 degrees
    • sin(0) = 0, cos(0) = 1 and tan(0) = 0
    Values of 30 degrees
    • sin(30) = 0.5, cos(30) = Sqr(3)/2 and tan(0) = Sqr(3)/3
    Values of 45 degrees
    • sin(45) = Sqr(2)/2, cos(45) = Sqr(2)/2 and tan(45) = 1
    Values of 90 degrees
    • sin(90) = 1, cos(90) = 0 and tan(90) = infinite
    • tang(89.999999) = +infinite
    • tang(90.000001) = +infinite
    From diagrams compare the answer

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1