Mathematics Dictionary
Dr. K. G. Shih
Relation Between Functions
Subjects
Symbol Defintion
Example : Sqr(x) = Square root of c
TR 05 00 |
- Outlines
TR 05 01 |
- Pythagorean relations
TR 05 02 |
- Unit circle
TR 05 03 |
- Unit hyperbola
TR 05 04 |
- cos(A)^4 + sin(A)^4 = 1 - 2*(sin(A)^2)*(cos(A)^2)
TR 05 05 |
- If tan(A) = 2, find (cos(A) + sin(A))^2
TR 05 06 |
- (cos(A) + sin(A))*(1 - cos(A)*sin(A)) = cos(A)^3 + sin(A)^3
TR 05 07 |
-
TR 05 08 |
-
TR 05 09 |
-
TR 05 10 |
-
Answers
TR 05 01. Pythagorean relations
Relations
1. cos(A)^2 + sin(A)^2 = 1.
2. tan(A)^2 + 1 = sec(A)^2.
3. cot(A)^2 + 1 = csc(A)^2.
Prove that cos(A)^2 + sin(A)^2 = 1
cos(A)^2 + sin(A)^2 = (Adj/Hyp)^2 + (Opp/Hyp)^2 = (Adj^2 + Opp^2)/Hyp^2.
Since Adj^2 + Opp^2 = Hyp^2.
Hence cos(A)^2 + sin(A)^2 = 1.
Prove that tan(A)^2 + 1 = sec(A)^2
cos(A)^2 + sin(A)^2 = 1.
Divide both sides by cos(A)^2.
Hence 1 + sin(A)^2/cos(A)^2 = 1/cos(A)^2.
Hence 1 + tan(A)^2 = sec(A)^2.
Prove that cot(A)^2 + 1 = csc(A)^2
cos(A)^2 + sin(A)^2 = 1.
Divide both sides by sin(A)^2.
Hence cos(A)^2/sin(A)^2 = 1/sin(A)^2.
Hence Cot(A)^2 + 1 = css(A)^2.
Go to Begin
TR 05 02. Unit circle
Prove that cos(A)^2 + sin(A)^2 = 1 give a unit circle.
Since x = r*cos(A) and y = r*sin(A)
Hence cos(A)^2 + sin(A)^2 = (x/r)^2 + (y/r)^2 = 1
Hence x^2 + y^2 = r^2.
Since r = 1. Hence it is a circle with radius 1 and center at (0,0).
Go to Begin
TR 05 03. Unit hyperbola
Prove that tan(A)^2 + 1 = sec(A)^2 gives a unit huperbola.
[Method 1]
Since x = tan(A) and y = sec(A)
Hence x^2 + 1 = y^2 or x^2 - y^2 = -1.
Hence it is a hyperbola with principal axis being y = 0 and sem-axis = 1.
[Method 2]
Let x = sec(A) and y = tan(A)
Hence y^2 + 1 = x^2 or x^2 - y^2 = 1.
Hence it is a hyperbola with principal axis being x = 0 and sem-axis = 1.
Go to Begin
TR 05 04. Prove that cos(x)^4 + sin(x)^4 = 1 - 2*(sin(x)^2)*(cos(x)^2)
Keyword
(a + b)^2 = a^2 + 2*a*b + b^2
Proof
cos(x)^4 + sin(x)^4 = (cos(x)^2 + sin(x)^2)^2 - 2*(sin(x)^2)*(cos(x)^2)
= 1 - 2*(sin(x)^2)*(cos(x)^2)
Go to Begin
TR 05 05. If tan(A) = 2, find (cos(A) + sin(A))^2
Use relations of function
(cos(A) + sin(A))^2 = cos(A)^2 + sin(A)^2 + 2*sin(A)*cos(A)
= 1 + 2*sin(A)*cos(A)*cos(A)/cos(A)
= 1 + 2*tan(A)*cos(A)^2
= 1 + 2*tan(A)*(1/sec(A)^2)
= 1 + 2*Tan(A)/(1 + tan(A)^2)
= 1 + 2*2/(1 + 2^2)
= 1 + 4/5
= 9/5
Triangle method
Since tan(A) = Opp/Adj = 2
Hence Opp = 2 and Adj = 1
Hence Hyp = Sqr(Opp^2 + Adj^2) = Sqr(2^2 + 1^2) = Sqr(5)
Hence sin(A) = Opp/Hyp = 2/Sqr(5) and cos(A) = Adj/Hyp = 1/Sqr(5)
Hence (sin(A) + cos(A))^2 = (2/Sqr(5) + 1/Sqr(5))^2
= (3/Sqr(5))^2
= 9/5
Go to Begin
TR 05 06. (cos(A) + sin(A))*(1 - cos(A)*sin(A)) = cos(A)^3 + sin(A)^3
Keywords
(a^3 + b^3) = (a + b)*(a^2 -a*b + b^2)
Proof
(cos(A) + sin(A))*(1 - cos(A)*sin(A))
= (cos(A) + sin(A))*(cos(A)^2 + sin(A)^2 - cos(A)*sin(A))
= cos(A)^3 + sin(A)^3
Go to Begin
TR 05 07. Answer
Go to Begin
TR 05 08. Answer
Go to Begin
TR 05 09. Answer
Go to Begin
TR 05 10. Answer
Go to Begin
TR 05 00. Outline
Pythagorean Relations
cos(A)^2 + sin(A)^2 = 1
tan(A)^2 + 1 = sec(A)^2
cot(A)^2 + 1 = csc(A)^2
Reciprocal Relation
sin(x) = 1/csc(x)
cos(x) = 1/sec(x)
tan(x) = 1/cot(x)
Unit circle and hyperbola
cos(A)^2 + sin(A)^2 = +1 and x^2 + y^2 = +1
tan(A)^2 - sec(A)^2 = -1 and x^2 - y^2 = -1
sec(A)^2 - tan(A)^2 = +1 and x^2 - y^2 = +1
Go to Begin
Show Room of MD2002
Contact Dr. Shih
Math Examples Room
Copyright © Dr. K. G. Shih, Nova Scotia, Canada.