Counter
Mathematics Dictionary
Dr. K. G. Shih

Relation Between Functions
Subjects


  • TR 05 00 | - Outlines
  • TR 05 01 | - Pythagorean relations
  • TR 05 02 | - Unit circle
  • TR 05 03 | - Unit hyperbola
  • TR 05 04 | - cos(A)^4 + sin(A)^4 = 1 - 2*(sin(A)^2)*(cos(A)^2)
  • TR 05 05 | - If tan(A) = 2, find (cos(A) + sin(A))^2
  • TR 05 06 | - (cos(A) + sin(A))*(1 - cos(A)*sin(A)) = cos(A)^3 + sin(A)^3
  • TR 05 07 | -
  • TR 05 08 | -
  • TR 05 09 | -
  • TR 05 10 | -

  • Answers


    TR 05 01. Pythagorean relations

    Relations
    • 1. cos(A)^2 + sin(A)^2 = 1.
    • 2. tan(A)^2 + 1 = sec(A)^2.
    • 3. cot(A)^2 + 1 = csc(A)^2.
    Prove that cos(A)^2 + sin(A)^2 = 1
    • cos(A)^2 + sin(A)^2 = (Adj/Hyp)^2 + (Opp/Hyp)^2 = (Adj^2 + Opp^2)/Hyp^2.
    • Since Adj^2 + Opp^2 = Hyp^2.
    • Hence cos(A)^2 + sin(A)^2 = 1.
    Prove that tan(A)^2 + 1 = sec(A)^2
    • cos(A)^2 + sin(A)^2 = 1.
    • Divide both sides by cos(A)^2.
    • Hence 1 + sin(A)^2/cos(A)^2 = 1/cos(A)^2.
    • Hence 1 + tan(A)^2 = sec(A)^2.
    Prove that cot(A)^2 + 1 = csc(A)^2
    • cos(A)^2 + sin(A)^2 = 1.
    • Divide both sides by sin(A)^2.
    • Hence cos(A)^2/sin(A)^2 = 1/sin(A)^2.
    • Hence Cot(A)^2 + 1 = css(A)^2.

    Go to Begin

    TR 05 02. Unit circle

    Prove that cos(A)^2 + sin(A)^2 = 1 give a unit circle.
    • Since x = r*cos(A) and y = r*sin(A)
    • Hence cos(A)^2 + sin(A)^2 = (x/r)^2 + (y/r)^2 = 1
    • Hence x^2 + y^2 = r^2.
    • Since r = 1. Hence it is a circle with radius 1 and center at (0,0).

    Go to Begin

    TR 05 03. Unit hyperbola

    Prove that tan(A)^2 + 1 = sec(A)^2 gives a unit huperbola.
    [Method 1]
    • Since x = tan(A) and y = sec(A)
    • Hence x^2 + 1 = y^2 or x^2 - y^2 = -1.
    • Hence it is a hyperbola with principal axis being y = 0 and sem-axis = 1.
    [Method 2]
    • Let x = sec(A) and y = tan(A)
    • Hence y^2 + 1 = x^2 or x^2 - y^2 = 1.
    • Hence it is a hyperbola with principal axis being x = 0 and sem-axis = 1.

    Go to Begin

    TR 05 04. Prove that cos(x)^4 + sin(x)^4 = 1 - 2*(sin(x)^2)*(cos(x)^2)

    Keyword
    • (a + b)^2 = a^2 + 2*a*b + b^2
    Proof
    • cos(x)^4 + sin(x)^4 = (cos(x)^2 + sin(x)^2)^2 - 2*(sin(x)^2)*(cos(x)^2)
    • = 1 - 2*(sin(x)^2)*(cos(x)^2)

    Go to Begin

    TR 05 05. If tan(A) = 2, find (cos(A) + sin(A))^2

    Use relations of function
    • (cos(A) + sin(A))^2 = cos(A)^2 + sin(A)^2 + 2*sin(A)*cos(A)
    • = 1 + 2*sin(A)*cos(A)*cos(A)/cos(A)
    • = 1 + 2*tan(A)*cos(A)^2
    • = 1 + 2*tan(A)*(1/sec(A)^2)
    • = 1 + 2*Tan(A)/(1 + tan(A)^2)
    • = 1 + 2*2/(1 + 2^2)
    • = 1 + 4/5
    • = 9/5
    Triangle method
    • Since tan(A) = Opp/Adj = 2
    • Hence Opp = 2 and Adj = 1
    • Hence Hyp = Sqr(Opp^2 + Adj^2) = Sqr(2^2 + 1^2) = Sqr(5)
    • Hence sin(A) = Opp/Hyp = 2/Sqr(5) and cos(A) = Adj/Hyp = 1/Sqr(5)
    • Hence (sin(A) + cos(A))^2 = (2/Sqr(5) + 1/Sqr(5))^2
    • = (3/Sqr(5))^2
    • = 9/5

    Go to Begin

    TR 05 06. (cos(A) + sin(A))*(1 - cos(A)*sin(A)) = cos(A)^3 + sin(A)^3

    Keywords
    • (a^3 + b^3) = (a + b)*(a^2 -a*b + b^2)
    Proof
    • (cos(A) + sin(A))*(1 - cos(A)*sin(A))
    • = (cos(A) + sin(A))*(cos(A)^2 + sin(A)^2 - cos(A)*sin(A))
    • = cos(A)^3 + sin(A)^3

    Go to Begin

    TR 05 07. Answer

    Go to Begin

    TR 05 08. Answer

    Go to Begin

    TR 05 09. Answer

    Go to Begin

    TR 05 10. Answer

    Go to Begin

    TR 05 00. Outline

    Pythagorean Relations
    • cos(A)^2 + sin(A)^2 = 1
    • tan(A)^2 + 1 = sec(A)^2
    • cot(A)^2 + 1 = csc(A)^2
    Reciprocal Relation
    • sin(x) = 1/csc(x)
    • cos(x) = 1/sec(x)
    • tan(x) = 1/cot(x)
    Unit circle and hyperbola
    • cos(A)^2 + sin(A)^2 = +1 and x^2 + y^2 = +1
    • tan(A)^2 - sec(A)^2 = -1 and x^2 - y^2 = -1
    • sec(A)^2 - tan(A)^2 = +1 and x^2 - y^2 = +1

    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1