TR 07 00 |
- Outlines
TR 07 01 |
- sin(A+B)=sin(A)*cos(B)+cos(A)*sin(B)
TR 07 02 |
- cos(A+B)=cos(A)*cos(B)-sin(A)*sin(B)
TR 07 03 |
- sin(A-B)=sin(A)*cos(B)-cos(A)*sin(B)
TR 07 04 |
- cos(A-B)=cos(A)*cos(B)+sin(A)*sin(B)
TR 07 05 |
- tan(A+B) and Tan(A-B)
TR 07 06 |
- Multiple angles : sin(5*A)
TR 07 07 |
- Half angle
TR 07 08 |
- Product of functions to sum of functions
TR 07 09 |
- Sum of functions to product of functions
TR 07 10 |
- sin(A+B)*sin(A-B) = sin(A)^2 - sin(B)^2
TR 07 11 |
- Angles of triangle in 3 GP terms with common ratio = 3
TR 07 12 |
- (sin(A) + sin(B))^2 = 1 + sin(2*A)
TR 07 13 |
- Prove that cos(6*x) = 32*cos(x)^6 - 48*cos(x)^4 +18*cos(x)^2 - 1
TR 07 14 |
- S(n) = cos(x) + cos(3*x) + cos(5*x) + .... + cos((2*n-1)*x)
TR 07 15 |
- S(n) = sin(x)^2 + sin(2*x)^2 + .... + sin(n*x)^2
TR 07 16 |
- Angles of triangle in 3 GP terms with common ratio = 2
TR 07 17 |
- y = sin(x) + cos(x), find maximum
TR 07 18 |
- y = sin(x) + Sqr(3)*cos(x), find maximum
TR 07 19 |
- Triangle ABC : Identities
TR 07 20 |
- sin(A)+sin(B)=p and cos(A)+cos(B)=q, find sin(A+B) and cos(A+B)
TR 07 21 |
- sin(A) and cos(A) have AP mid term sin(x) and GP mid term sin(y)
TR 07 22 |
- If sin(x+y) = sin(x)+sin(y), ....
TR 07 23 |
- Show that 5 + 8*cos(x) + 4*cos(2*x) + cos(3*x) GE 0
TR 07 24 |
- Find sin(20)*sin(40)*sin(60)*sin(80) with out calculator
TR 07 25 |
- sin(pi/16)^4 + sin(3*pi/16)^4 + sin(5*pi/16)^4 + sin(7*pi/16) = ?
TR 07 26 |
- Quiz and answers
Answers
|
TR 07 01. sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B)
Prove that sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B).
PN perpendicular to ON and NK perpemdicular to PL.
Right triangle ONP.
- NP = OP*sin(B) and NO = OP*cos(B).
Right triangle OPL
- sin(A+B) = PL/OP = (PK + KL)/OP = (PK + MN)/OP.
- PK = NP*cos(A) = OP*sin(B)*cos(A).
- MN = ON*sin(A) = OP*cos(B)*sin(A).
- sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B).
Application of sin(A+B) : Find values
- sin(075) = sin(30+ 45) = sin(30)*c0s(45) + cos(30)*sin(45) = ?
- sin(105) = sin(180-75) = +sin(75)
- sin(255) = sin(180+75) = -sin(75)
- sin(285) = sin(360-75) = -sin(75)
Application of sin(A+B) : Find drivative of sin(x)
- Lim[sin(x+h) - sin(x))/h] = cos(x) as h tends to 0.
Go to Begin
TR 07 02. cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B)
Prove that cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B).
PN perpendicular to ON and NK perpemdicular to PL.
Right triangle ONP
- NP = OP*sin(B) and NO = OP*cos(B).
Right triangle OPL
- cos(A+B) = OL/OP = (OM - LM)/OP = (OM - KN)/OP.
- KN = NP*sin(A) = OP*sin(B)*sin(A).
- OM = ON*cos(A) = OP*cos(B)*cos(A).
- cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B).
Application of cos(A+B)
- cos(075) = cos(30+ 45) = cos(30)*c0s(45) - cos(30)*sin(45) = ?
- cos(105) = cos(180-75) = -cos(75)
- cos(255) = cos(180+75) = -cos(75)
- cos(285) = cos(360-75) = +cos(75)
Go to Begin
TR 07 03. sin(A-B) = sin(A)*cos(B) - cos(A)*sin(B)
Prove that sin(A-B) = sin(A)*cos(B) + cos(A)*sin(B).
PN perpendicular to ON and NK perpemdicular to PL.
Right triangle ONP.
- NP = OP*sin(B) and NO = OP*cos(B).
Right triangle OPL
- sin(A-B) = PL/OP = (KL - PK)/OP = (MN - OK)/OP.
- PK = NP*cos(A) = OP*sin(B)*cos(A).
- MN = ON*sin(A) = OP*cos(B)*sin(A).
- sin(A-B) = sin(A)*cos(B) - cos(A)*sin(B).
Application of sin(A-B)
- sin(015) = sin(45- 30) = sin(30)*c0s(45) + cos(30)*sin(45) = ?
- sin(165) = sin(180-15) = +sin(15)
- sin(195) = sin(180+15) = -sin(15)
- sin(345) = sin(360-15) = -sin(15)
Go to Begin
TR 07 04. cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)
Geometric method
PN perpendicular to ON and NK perpemdicular to PL.
Right triangle ONP
- NP = OP*sin(B) and NO = OP*cos(B).
Right triangle OPL
- cos(A-B) = OL/OP = (OM + LM)/OP = (OM + KN)/OP.
- KN = NP*sin(A) = OP*sin(B)*sin(A).
- OM = ON*cos(A) = OP*cos(B)*cos(A).
- cos(A+B) = cos(A)*cos(B) + sin(A)*sin(B).
Use cosine law and distance formuls
- Construction
- Draw a unit circle with OX = 1.
- Draw point P and Q on circle. OP = OQ = 1.
- Angle XOP = A and XOQ = B
- Angle POQ = A - B
- Distance = AB = d
- Proof
- By cosine law
- d^2 = 1^2 + 1^2 - 2*1*1*cos(A-B)
- d^2 = 2 - 2*cos(A-B)
- Find distance between P and Q
- Coordinate P(cos(A), sin(A))
- Coordinate Q(cos(B), sin(B))
- d^2 = (cos(A)-cos(B))^2 + (sin(A)-sin(B))^2
- Since cos(A)^2 + sin(A)^2 = 1 and cos(B)^2 + sin(B)^2 = 1
- After expansion
- d^2 = 2 - 2*cos(A)*cos(B) - 2*sin(A)*sin(B)
- Hence cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)
Application of cos(A-B)
- cos(015) = cos(45- 30) = cos(30)*cos(45) + sin(30)*sin(45) = ?
- cos(165) = cos(180-15) = -cos(15)
- cos(195) = cos(180+15) = -cos(15)
- cos(345) = cos(360-15) = +cos(15)
Go to Begin
TR 07 05. tan(A+B) and tan(A-B)
Prove that tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)*tan(y)).
- tan(A+B) = (sin(A)*cos(B) + cos(A)*sin(B))/(sin(A)*cos(B) os(A)*cos(B)).
- Divide numerator and denominator by cos(A)*cos(B).
- tan(A+B) = (sin(A)/cos(A) + sin(B)/cos(B))/(1 - (sin(A)/cos(A))*(sin(B)/cos(B))).
- tan(A+B) = (tan(A) +tan(B))/(1 - tan(A)*tan(B)
Prove that tan(x-y) = (tan(x) - tan(y))/(1 + tan(x)*tan(y)).
- tan(A-B) = (sin(A)*cos(B) - cos(A)*sin(B))/(sin(A)*cos(B) + cos(A)*cos(B)).
- Divide numerator and denominator by cos(A)*cos(B).
- tan(A-B) = (sin(A)/cos(A) - sin(B)/cos(B))/(1 + (sin(A)/cos(A))*(sin(B)/cos(B))).
- tan(A-B) = (tan(A) - tan(B))/(1 + tan(A)*tan(B)
Application of tan(A+B)
- tan(075) = tan(30+ 45) = (tan(30) + tan(45))/(1 - tan(30)*tan(45)) = ?
- tan(105) = tan(180-75) = -tan(75)
- tan(255) = tan(180+75) = +tan(75)
- tan(285) = tan(360-75) = -tan(75)
Application of tan(A-B)
- tan(015) = tan(45- 30) = (tan(45) - tan(30))/(1 + tan(30)*tan(45)) = ?
- tan(165) = tan(180-15) = -tan(15)
- tan(195) = tan(180+15) = +tan(15)
- tan(345) = tan(360-15) = -tan(15)
Go to Begin
TR 07 06. Multple of angle : sin(5*x)
Identities of sine :
- 1. sin(2*x) = 2*sin(x)*cos(x).
- 2. sin(3*x) = 3*sin(x) - 4*sin(x)^3.
- 3. sin(4*x) = 4*sin(x)*cos(x)^3 - 4*cos(x)*sin(x)^3.
- 4. sin(5*x) = 5*sin(x) - 20*sin(x)^3 + 16*sin(x)^5.
Identities of cosine
- 1. cos(2*x) = cos(x)^2 - sin(x)^2 = 2*cos(x)^2 - 1 = 1 - 2*sin(x)^2.
- 2. cos(3*x) = 4*cos(x)^3 - 3*cos(x).
- 3. cos(4*x) = 8*cos(x)^4 - 8*cos(x)^2 + 1.
- 4. cos(5*x) = 16*cos(x)^5 - 20*cos(x)^3 + 5*cos(x)
Identities of tangent
- 1. tan(2*x) = 2*tan(x)/(1-tan(x)^2).
Go to Begin
TR 07 07. Half angle
Identities
- sin(A/2) = Sqr((1-cos(A))/2)
- cos(A/2) = Sqr((1+cos(A))/2)
- tan(A/2) = Sqr((1-cos(A))/(1+cos(A)))
Proof
- Prove that sin(A/2) = Sqr((1-cos(A))/2).
- Since cos(2*x) = 1 - 2*sin(x)^2.
- Hence 2*sin(x)^2 = 1 - cos(2*x).
- Let 2*x = A we have sin(A/2)^2 = 1 - cos(A).
- Hence sin(A/2) = Sqr((1-cos(A))/2).
- Prove that cos(A/2) = Sqr((1+cos(A))/2).
- Since cos(2*x) = 2*cos(x)^2 - 1.
- Hence 2*cos(x)^2 = 1 + cos(2*x).
- Let 2*x = A we have cos(A/2)^2 = 1 + cos(A).
- Hence cos(A/2) = Sqr((1+cos(A))/2).
Application examples
- 1. Find sin(22.5) without using calculator.
- sin(22.5) = Sqr((1 - cos(45))/2).
- Since cos(45) = Sqr(2)/2.
- Hence sin(22.5) = Sqr((1 - Sqr(2)/2)/2).
- 2. Find sin(15) without using calculator.
- sin(15) = Sqr((1 - cos(30))/2).
- Since cos(30) = Sqr(3)/2.
- Hence sin(15) = Sqr((1 - Sqr(3)/2)/2).
- 3. Find cos(22.5)
- cos(22.5) = Sqr((1+cos(45))/2)
- = Sqr((1+Sqr(2))/2)/2)
- = Sqr(2+Sqr(2))/4).
Go to Begin
TR 07 08. Product of functions to sum of functions
Identities : Use sum and difference we can easily derive the formula
- sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
- cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
- sin(A)*cos(B) = (sin(A+B) - sin(A-B))/2.
- cos(A)*sin(A) = (cos(A+B) + cos(A-B))/2.
Proof
- 1. Prove that sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
- cos(A+B) = cos(A)*cos(B) - sin(A)*(sin(B).
- cos(A-B) = cos(A)*cos(B) + sin(A)*(sin(B).
- Hence 2*sin(A)*sin(B) = cos(A-B) - cos(A+B)
- 2. Prove that cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
- cos(A+B) = cos(A)*cos(B) - sin(A)*(sin(B).
- cos(A-B) = cos(A)*cos(B) + sin(A)*(sin(B).
- Hence 2*cos(A)*cos(B) = cos(A+B) + cos(A-B)
Go to Begin
TR 07 09. Sum of functions to Product functions
Identities : Use product of functions to derive the following formula
- sin(A) + sin(B) = +2*sin((A+B)/2)*cos((A-B)/2).
- sin(A) - sin(B) = +2*cos((A+B)/2)*sin((A-B)/2).
- cos(A) + cos(B) = +2*cos((A+B)/2)*cos((A-B)/2).
- cos(A) - cos(B) = -2*sin((A+B)/2)*sin((A-B)/2).
Proof
- 1. Prove that sin(A) + sin(B) = 2*sin((A+B)/2)*cos((A-B)/2).
- sin(C+D) = sin(C)*cos(D) + cos(C)*sin(D).
- sin(C-D) = sin(C)*cos(D) - cos(C)*sin(D).
- sin(C+D) + sin(C-D) = 2*sin(C)*cos(D).
- Let C + D = A and C - D = B.
- Hence 2*C = A + B and 2*D = A - B.
- Hence sin(A) + sin(B) = 2*sin((A+B)/2)*cos((A-B)/2).
- 2. Prove that sin(A) - sin(B) = 2*cos((A+B)/2)*sin((A-B)/2).
- sin(C+D) = sin(C)*cos(D) + cos(C)*sin(D).
- sin(C-D) = sin(C)*cos(D) - cos(C)*sin(D).
- sin(C+D) - sin(C-D) = 2*cso(C)*sin(D).
- Let C + D = A and C - D = B.
- Hence 2*C = A + B and 2*D = A - B.
- Hence sin(A) - sin(B) = 2*cos((A+B)/2)*sin((A-B)/2).
Go to Begin
TR 07 10. sin(A+B)*sin(A-B) = sin(A)^2 - sin(B)^2
Hint
- 1. Formula of sin(A+B) and sin(A-B).
- 2. Factor : (x^2 - y^2) = (x + y)*(x - y).
- 3. Pythagorean relation : cos(x)^2 + sin(x)^2 = 1.
Proof
- LHS = (sin(A)*cos(B)+cos(A)*sin(B)*(sin(A)*cos(B)-cos(A)*sin(B).
- LHS = (sin(A)*cos(B))^2 - (cos(A)*sin(B))^2.
- LHS = (sin(A)^2)*(1-sin(B)^2) - (sin(B)^2)*(1-sin(B)^2).
- LHS = sin(A)^2 - sin(B)^2.
- LHS = RHS.
Go to Begin
TR 07 11. Angles of triangle in 3 GP terms with common ratio = 3
Question
- Angles of triangle are in 3 consecutive GP terms.
- If common ratio is r = 3, then cos(A)*cos(B) + cos(B)*cos(C) + cos(C)*cos(A) = -1/4
Proof
- Let angle A = x, then angle B = 3*x and angle C = 9*x
- A + B + C = 13*x = 180. Hence angle A = x = 180/13 degrees
- Use product formula of functions
- LHS
- = cos(A)*cos(B) + cos(B)*cos(C) + cos(C)*cos(A)
- = (cos(A+B) + cos(A-B) + cos(B+C) + cos(B-C) + cos(C+A) + cos(C-A))/2
- = (cos(4*x) + cos(2*x) + cos(12*x) + cos(6*x) + cos(10*x) + cos(8*x))/2
- = (cos(12*x) + cos(10*x) + cos(8*x) + cos(6*x) + cos(4*x) + cos(2*x))/2
- Each term of above multiply by sin(x)/sin(x)
- LHS = (cos(12*x)*sin(x) + cos(10*x)*sin(x) + .... )/(2*sin(x))
- Since
- sin(x)*cos(2*x) = (sin(x+2*x) + sin(x-2*x))/2 = (sin(3*x) - sin(x))/2
- sin(x)*cos(4*x) = (sin(x+4*x) + sin(x-4*x))/2 = (sin(5*x) - sin(3*x))/2
- sin(x)*cos(6*x) = (sin(x+6*x) + sin(x-6*x))/2 = (sin(7*x) - sin(5*x))/2
- sin(x)*cos(8*x) = (sin(x+8*x) + sin(x-8*x))/2 = (sin(9*x) - sin(7*x))/2
- sin(x)*cos(10*x) = (sin(x+10*x) + sin(x-10*x))/2 = (sin(11*x) - sin(9*x))/2
- sin(x)*cos(12*x) = (sin(x+12*x) + sin(x-12*x))/2 = (sin(13*x) - sin(11*x))/2
- Add above terms and many terms are cancelled out
- LHS = (sin(13*x) - sin(x))/(2*2*sin(x)
- LHS = (sin(180) - sin(x))/(4*sin(x))
- LHS = (0 - sin(x))/(4*sin(x))
- LHS = -1/4
Exercise : Numerical proof
- Since A = x, B = 3*x and C = 9*x are in GP with common ratio = 3
- Hence A + B + C = 13*x = 180 degree
- Hence A = x = 180/13 = 13.84615, B = 3*x = 41.53846 and C = 9*x = 124.61538
- Substitute A, B, C into expression
- cos(A)*cos(B) + cos(B)*cos(C) + cos(C)*cos(A) = ?
- Use calculator find the answer
Go to Begin
TR 07 12. Prove (sin(A) + cos(A))^2 = 1 + sin(2*A)
Proof
- (sin(A) + cos(A))^2 = sin(A)^2 + 2*sin(A)*cos(A) + cos(A)^2
- = (cos(A)^2 + sin(A)^2) + 2*sin(A)*cos(A)
- = 1 + sin((2*A).
Go to Begin
TR 07 13. Prove that cos(6*x) = 32*cos(x)^6 - 48*cos(x)^4 +18*cos(x)^2 - 1
Proof
- cos(6*x) = cos(3x + 3*x).
- cos(3*x) = 2*cos(3*x)^2 - 1.
- cos(3*x) = 2*(4*cos(x)^3 - 3*cos(x))^2 - 1.
- cos(6*x) = 32*cos(x)^6 - 48*cos(x)^4 + 18*cos(x)^2 - 1.
Go to Begin
TR 07 14. S(n) = cos(x) + cos(3*x) + cos(5*x) + .... + cos((2*n-1)*x)
Solution
Go to Begin
TR 07 15. S(n) = sin(x)^2 + sin(2*x)^2 + sin(3*x)^2 + ... + sin(n*x)^2
Solution
Go to Begin
TR 07 16. Angles of triangle in 3 GP terms with common ratio = 2
Solution
Go to Begin
TR 07 17. y = sin(x) + cos(x), find maximum
Graphic
Mehtod 1 : Use sin(A+B) = sin(A)*cos(B) - cos(A)*sin(B)
- Multiply each side by Sqr(2)/2
- (Sqr(2)*y/2) = (Sqr(2)/2)*sin(x) + (Sqr(2)/2)*cos(x)
- = cos(pi/4)*sin(x) + sin(pi/4)*cos(x)
- = sin((pi/4) + x)
- Since sin(A) LE 1 or GE - 1
- sin(x + pi/4) = 1 has maximum
- Hence x + pi/4 = pi/2 or x = pi/4
- Hence maximum of y is y = Sqr(2)
Method 2 : Use dy/dx = 0
- y' = cos(x) - sin(x) = 0
- Hence cos(x) = sin(x) or tan(x) = 1
- Hence x = pi/4 and y = Sqr(2)
Go to Begin
TR 07 18. y = sin(x) + Sqr(3)*cos(x), find maximum
Graphic
Mehtod 1 : Use sin(A+B) = sin(A)*cos(B) - cos(A)*sin(B)
- Multiply each side by 1/2
- (y/2) = (1/2)*sin(x) + (Sqr(3)/2)*cos(x)
- = cos(pi/3)*sin(x) + sin(pi/3)*cos(x)
- = sin((pi/3) + x)
- Since sin(A) LE 1 or GE - 1
- sin(x + pi/3) = 1 has maximum
- Hence x + pi/3 = pi/2 or x = pi/6
- Hence maximum of y is y = sin(pi/6) + Sqr(3)*cos(pi/6) = 2
Method 2 : Use dy/dx = 0
- y' = cos(x) - Sqr(3)*sin(x) = 0
- Hence cos(x) = Sqr(3)*sin(x) or tan(x) = 1/Sqr(3)
- Hence x = pi/6 and y = 2
Go to Begin
TR 07 19. Triangle ABC : Identities
Questions
- 1. cos(2*A) + cos(2*B) + cos(2*C) = ?
- 2. sin(A)^2 + sin(B)^2 + sin(C)^2 = ?
- 3. cos(A) + cos(B) + cos(C) = ?
Solution
Go to Begin
TR 07 20. sin(A)+sin(B)=p and cos(A)+cos(B)=q, find sin(A+B) and cos(A+B)
Solution
Go to Begin
TR 07 21. sin(A) and cos(A) have AP mid term sin(x) and GP mid term sin(y), ...
Solution
Go to Begin
TR 07 22. If sin(x + y) = sin(x) + sin(y)
Solution
Go to Begin
TR 07 23. 5 + 8*cos(x) + 4*cos(2*x) + cos(3*x) GE 0
Solution
Go to Begin
TR 07 24. Find sin(20)*sin(40)*sin(60)*sin(80) with out calculator
Solution
-
Subject |
Q09, Q10 and Q11
- Q09 : Find sin(20)*sin(40)*sin(60)*sin(80) with out calculator
- Q10 : Find cos(20)*cos(40)*cos(60)*cos(80) with out calculator
- Q11 : Find cos(20)*cos(40)*cos(60)*cos(80) with out calculator
Go to Begin
TR 07 25. sin(pi/16)^4 + sin(3*pi/16)^4 + sin(5*pi/16)^4 + sin(7*pi/16) = 3/2
Solution
-
Subject |
Q17
- Q18 : cos(1*pi/16)^4 + cos(3*pi/16)^4 + cos(5*pi/16)^4 + cos(7*pi/16)^4 = 3/2
Go to Begin
TR 07 26. Quiz and answer
Answer
Go to Begin
Q00. Outlines
Sum of angles
- 1. sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y).
- 2. cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y).
- 3. tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)*tan(y)).
Diference of angles
- 1. sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y).
- 2. cos(x-y) = cos(x)*cos(y) + sin(x)*(sin(y).
- 3. tan(x-y) = (tan(x) - tan(y))/(1 + tan(x)*tan(y)).
Multiple angles
- cos(2*x) = 2*cos(x)^2 - 1
- sin(2*x) = 2*sin(x)*cos(x)
- tan(2*x) = 2*tan(x)/(1-tan(x)^2)
Half angle
- cos(x/2) = Sqr((1 + cos(x))/2)
- sin(x/2) = Sqr((1 - cos(x))/2)
- cos(x) = Sqr((1 - cos(x))/(1 + cos(x)))
Product of functions
- sin(A)*sin(B) = (cos(A-B) - cos(A+B))/2.
- cos(A)*cos(B) = (cos(A-B) + cos(A+B))/2.
- sin(A)*cos(B) = (sin(A+B) - sin(A-B))/2.
- cos(A)*sin(A) = (cos(A+B) + cos(A-B))/2.
Sum or difference of functions
- sin(A) + sin(B) = +2*sin((A+B)/2)*cos((A-B)/2).
- sin(A) - sin(B) = +2*cos((A+B)/2)*sin((A-B)/2).
- cos(A) + cos(B) = +2*cos((A+B)/2)*cos((A-B)/2).
- cos(A) - cos(B) = -2*sin((A+B)/2)*sin((A-B)/2).
Go to Begin
|
|