Counter
Mathematics Dictionary
Dr. K. G. Shih

Polar coordinates
Subject


  • TR 15 01 | - Introduction
  • TR 15 02 | - R = sin(p*A/q)^M
  • TR 15 03 | - R = tan(p*A/q)^M
  • TR 15 04 | - R = sec(p*A/q)^M
  • TR 15 05 | - R = 1 + 1*sin(p*A/q)^M
  • TR 15 06 | - R = 2 + 4*sin(p*A/q)^M
  • TR 15 07 | - R = 4 + 2*sin(p*A/q)^M
  • TR 15 08 | - R = 1 + 1*sec(p*A/q)^M
  • TR 15 09 | - R = 2 + 4*sec(p*A/q)^M
  • TR 15 10 | - R = 4 + 2*sec(p*A/q)^M
  • TR 15 11 | - R = 1 + 1*tan(p*A/q)^M
  • TR 15 12 | - R = 2 + 4*tan(p*A/q)^M
  • TR 15 13 | - R = 4 + 2*tan(p*A/q)^M

  • Answers


    TR 15 01. Introduction

    Defintion : Relation of Polar coordinates with rectangular coordinates
    • x = r*cos(A).
    • y = r*sin(A).
    • r = Sqr(x^2 + y^2).
    • A = arctan(y/x).
    How to sketch R = sin(A) ?
    Examples : Study the questions with diagrams
    • Subjects | Introduction
    • Step 1 : Click Start command.
    • Step 2 : Click introdduction in upper box.
    • Step 3 : Click a question in lower box.

    Go to Begin

    TR 15 02. Graph of R = sin(p*A/q)^M

    Find the pattern of R = sin(P*A/2)^M
    • Subjects | Start the program
    • Step 1 : Clcik Start.
    • Step 2 : Click R = sin(p*A/q)^M in upper box.
    • Step 3 : Click q = 2 in lower box.
    • It will give graphs
      • for p = 1,3,5,7,9,11 and M = 1.
      • for p = 1,3,5,7,9,11 and M = 2.
      • for p = 1,3,5,7,9,11 and M = 3.

    Go to Begin

    TR 15 03. R = tan(p*A/q)^M


    Go to Begin

    TR 15 04. R = sec(p*A/q)^M

    Go to Begin

    TR 15 05. R = 1 + 1*sin(p*A/q)^M

    Go to Begin

    TR 15 06. R = 2 + 4*sin(p*A/q)^M


    Go to Begin

    TR 15 07. R = 4 + 2*sin(p*A/q)^M


    Go to Begin

    TR 15 08. R = 1 + 1*sec(p*A/q)^M

    Go to Begin

    TR 15 09. R = 2 + 4*sec(p*A/q)^M


    Go to Begin

    TR 15 10. R = 4 + 2*sec(p*A/q)^M


    Go to Begin

    TR 15 11. R = 1 + 1*tan(p*A/q)^M

    Go to Begin

    TR 15 12. R = 2 + 4*tan(p*A/q)^M


    Go to Begin

    TR 15 13. R = 4 + 2*tan(p*A/q)^M


    Go to Begin

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    1